A340659 The number of overpartitions of n having an equal number of overlined and non-overlined parts.
1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0
Keywords
Examples
a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add( add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)
Formula
G.f.: Sum_{n>=0} q^(n*(n+1)/2 + n)/Product_{k=1..n} (1-q^k)^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * phi^2 * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 06 2021
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 15 2021
Comments