cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340659 The number of overpartitions of n having an equal number of overlined and non-overlined parts.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Examples

			a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
           add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)

Formula

G.f.: Sum_{n>=0} q^(n*(n+1)/2 + n)/Product_{k=1..n} (1-q^k)^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * phi^2 * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 06 2021
a(n) = A143184(n) - A001524(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 15 2021

A340668 The number of overpartitions of n where the number of non-overlined parts is at least two more than the number of overlined parts.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 29, 49, 79, 125, 193, 293, 437, 642, 932, 1336, 1896, 2663, 3709, 5121, 7020, 9551, 12913, 17347, 23172, 30779, 40679, 53495, 70030, 91269, 118459, 153133, 197214, 253057, 323595, 412418, 523953, 663612, 838035, 1055304, 1325287, 1659969
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Comments

Also equal to A340658(n) - A001524(n).

Examples

			a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
         `if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
          add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[
         Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/ ((Product_{k=1..n} (1-q^k)^2) * (1-q^(n+1))).
Showing 1-2 of 2 results.