A273618 Numbers m = 2*k+1 where k is odd with the property that 3^k mod m = 1 and k^k mod m = 1.
11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1
Keywords
Examples
m=131; 131=2*65+1; 3^65 mod 131 = 1 and 65^65 mod 131 = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local k; k:= (n-1)/2; 3 &^ k mod n = 1 and k &^ k mod n = 1 end proc: select(filter, [seq(i,i=3..3000, 4)]); # Robert Israel, Nov 28 2019
-
Mathematica
2#+1&/@Select[Range[1,1200,2],PowerMod[3,#,2#+1]==PowerMod[ #,#,2#+1] == 1&] (* Harvey P. Dale, May 05 2022 *)
Comments