A360244 Number of integer partitions of n where the parts do not have the same median as the distinct parts.
0, 0, 0, 0, 1, 3, 3, 9, 11, 17, 23, 37, 42, 68, 87, 110, 153, 209, 261, 352, 444, 573, 750, 949, 1187, 1508, 1909, 2367, 2938, 3662, 4507, 5576, 6826, 8359, 10203, 12372, 15011, 18230, 21996, 26518, 31779, 38219, 45682, 54660, 65112, 77500, 92089, 109285
Offset: 0
Keywords
Examples
The a(4) = 1 through a(9) = 17 partitions: (211) (221) (411) (322) (332) (441) (311) (3111) (331) (422) (522) (2111) (21111) (511) (611) (711) (2221) (4211) (3222) (3211) (5111) (3321) (4111) (22211) (4311) (22111) (32111) (5211) (31111) (41111) (6111) (211111) (221111) (22221) (311111) (33111) (2111111) (42111) (51111) (321111) (411111) (2211111) (3111111) (21111111) For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]],{n,0,30}]
Comments