A361849
Number of integer partitions of n such that the maximum is twice the median.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 4, 3, 4, 7, 9, 9, 15, 16, 20, 26, 34, 37, 50, 55, 68, 86, 103, 117, 145, 168, 201, 236, 282, 324, 391, 449, 525, 612, 712, 818, 962, 1106, 1278, 1470, 1698, 1939, 2238, 2550, 2924, 3343, 3824, 4341, 4963, 5627, 6399, 7256, 8231, 9300
Offset: 1
The a(4) = 1 through a(11) = 9 partitions:
211 2111 21111 421 422 4221 631 632
3211 221111 4311 4222 5321
22111 2111111 2211111 42211 5411
211111 21111111 322111 42221
2221111 43211
22111111 332111
211111111 22211111
221111111
2111111111
For example, the partition (3,2,1,1) has maximum 3 and median 3/2, so is counted under a(7).
For minimum instead of median we have
A118096.
For length instead of median we have
A237753.
For mean instead of median we have
A361853.
These partitions have ranks
A361856.
For "greater" instead of "equal" we have
A361857, allowing equality
A361859.
A361860 counts partitions with minimum equal to median.
A361848
Number of integer partitions of n such that (maximum) <= 2*(median).
Original entry on oeis.org
1, 2, 3, 5, 6, 9, 12, 15, 19, 26, 31, 40, 49, 61, 75, 93, 112, 137, 165, 199, 238, 289, 341, 408, 482, 571, 674, 796, 932, 1096, 1280, 1495, 1738, 2026, 2347, 2724, 3148, 3639, 4191, 4831, 5545, 6372, 7298, 8358, 9552, 10915, 12439, 14176, 16121, 18325
Offset: 0
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (2111) (222) (322)
(11111) (321) (331)
(2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,2) has maximum 3 and median 2, and 3 <= 2*2, so y is counted under a(7).
For length instead of median we have
A237755.
For minimum instead of median we have
A237824.
For mean instead of median we have
A361851.
A000975 counts subsets with integer median.
Cf.
A008284,
A013580,
A027193,
A061395,
A067538,
A111907,
A240219,
A324562,
A359907,
A361394,
A361860.
A361853
Number of integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1
The a(6) = 2 through a(12) = 10 partitions:
(411) . (4211) (621) (5221) . (822)
(3111) (321111) (5311) (831)
(42211) (6222)
(43111) (6321)
(6411)
(422211)
(432111)
(441111)
(32211111)
(33111111)
The partition y = (6,4,1,1) has diagram:
o o o o o o
o o o o . .
o . . . . .
o . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
For minimum instead of mean we have
A118096.
For length instead of mean we have
A237753.
These partitions have ranks
A361855.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A111907,
A116608,
A188814,
A237755,
A237824,
A237984,
A240219,
A326849,
A327482,
A349156,
A359894.
A361855
Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum).
Original entry on oeis.org
28, 40, 78, 84, 171, 190, 198, 220, 240, 252, 280, 351, 364, 390, 406, 435, 714, 748, 756, 765, 777, 784, 814, 840, 850, 925, 988, 1118, 1197, 1254, 1330, 1352, 1419, 1425, 1440, 1505, 1564, 1600, 1638, 1716, 1755, 1794, 1802, 1820, 1950, 2067, 2204, 2254
Offset: 1
The terms together with their prime indices begin:
28: {1,1,4}
40: {1,1,1,3}
78: {1,2,6}
84: {1,1,2,4}
171: {2,2,8}
190: {1,3,8}
198: {1,2,2,5}
220: {1,1,3,5}
240: {1,1,1,1,2,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
The prime indices of 84 are {1,1,2,4}, with maximum 4, length 4, and sum 8, and 4*4 = 2*8, so 84 is in the sequence.
The prime indices of 120 are {1,1,1,2,3}, with maximum 3, length 5, and sum 8, and 3*5 != 2*8, so 120 is not in the sequence.
The prime indices of 252 are {1,1,2,2,4}, with maximum 4, length 5, and sum 10, and 4*5 = 2*10, so 252 is in the sequence.
The partition (5,2,2,1) with Heinz number 198 has diagram:
o o o o o
o o . . .
o o . . .
o . . . .
Since the partition and its complement (shown in dots) both have size 10, 198 is in the sequence.
A061395 gives greatest prime index.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],Max@@prix[#]*PrimeOmega[#]==2*Total[prix[#]]&]
A361858
Number of integer partitions of n such that the maximum is less than twice the median.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 8, 12, 15, 19, 22, 31, 34, 45, 55, 67, 78, 100, 115, 144, 170, 203, 238, 291, 337, 403, 473, 560, 650, 772, 889, 1046, 1213, 1414, 1635, 1906, 2186, 2533, 2913, 3361, 3847, 4433, 5060, 5808, 6628, 7572, 8615, 9835, 11158, 12698, 14394
Offset: 1
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (322) (71)
(321) (331) (332)
(2211) (2221) (431)
(111111) (1111111) (2222)
(3221)
(3311)
(22211)
(11111111)
The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8).
For minimum instead of median we have
A053263.
For length instead of median we have
A237754.
For mean instead of median we have
A361852.
A000975 counts subsets with integer median.
Cf.
A008284,
A027193,
A237751,
A237755,
A237820,
A237824,
A240219,
A361394,
A361851,
A361860,
A361907.
A361859
Number of integer partitions of n such that the maximum is greater than or equal to twice the median.
Original entry on oeis.org
0, 0, 0, 1, 2, 3, 7, 10, 15, 23, 34, 46, 67, 90, 121, 164, 219, 285, 375, 483, 622, 799, 1017, 1284, 1621, 2033, 2537, 3158, 3915, 4832, 5953, 7303, 8930, 10896, 13248, 16071, 19451, 23482, 28272, 33977, 40736, 48741, 58201, 69367, 82506, 97986, 116139
Offset: 1
The a(4) = 1 through a(9) = 15 partitions:
(211) (311) (411) (421) (422) (522)
(2111) (3111) (511) (521) (621)
(21111) (3211) (611) (711)
(4111) (4211) (4221)
(22111) (5111) (4311)
(31111) (32111) (5211)
(211111) (41111) (6111)
(221111) (33111)
(311111) (42111)
(2111111) (51111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 >= 2*2, so y is counted under a(10).
For length instead of median we have
A237752.
For minimum instead of median we have
A237821.
Reversing the inequality gives
A361848.
The complement is counted by
A361858.
These partitions have ranks
A361868.
For mean instead of median we have
A361906.
A000975 counts subsets with integer median.
Cf.
A008284,
A027193,
A067538,
A237755,
A237820,
A237824,
A240219,
A359907,
A361851,
A361860,
A361907.
A361906
Number of integer partitions of n such that (length) * (maximum) >= 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1
The a(6) = 2 through a(10) = 15 partitions:
(411) (511) (611) (621) (721)
(3111) (4111) (4211) (711) (811)
(31111) (5111) (5211) (5221)
(41111) (6111) (5311)
(311111) (42111) (6211)
(51111) (7111)
(321111) (42211)
(411111) (43111)
(3111111) (52111)
(61111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
The complement is counted by
A361852.
Reversing the inequality gives
A361851.
A051293 counts subsets with integer mean.
A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
A361857
Number of integer partitions of n such that the maximum is greater than twice the median.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 7, 11, 16, 25, 37, 52, 74, 101, 138, 185, 248, 325, 428, 554, 713, 914, 1167, 1476, 1865, 2336, 2922, 3633, 4508, 5562, 6854, 8405, 10284, 12536, 15253, 18489, 22376, 26994, 32507, 39038, 46802, 55963, 66817, 79582, 94643, 112315
Offset: 1
The a(5) = 1 through a(10) = 16 partitions:
(311) (411) (511) (521) (522) (622)
(3111) (4111) (611) (621) (721)
(31111) (4211) (711) (811)
(5111) (5211) (5221)
(32111) (6111) (5311)
(41111) (33111) (6211)
(311111) (42111) (7111)
(51111) (43111)
(321111) (52111)
(411111) (61111)
(3111111) (331111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10).
For length instead of median we have
A237751.
For minimum instead of median we have
A237820.
The complement is counted by
A361848.
Reversing the inequality gives
A361858.
These partitions have ranks
A361867.
For mean instead of median we have
A361907.
A000975 counts subsets with integer median.
A361854
Number of strict integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1
The a(n) strict partitions for selected n (A..E = 10..14):
n=9: n=12: n=14: n=15: n=16: n=18: n=20: n=21: n=22:
--------------------------------------------------------------
621 831 7421 A32 8431 C42 A532 E43 B542
6321 A41 8521 C51 A541 E52 B632
9432 A631 E61 B641
9531 A721 B731
9621 85421 B821
86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
o o o o o o o o
o o o o o . . .
o o o o . . . .
o o . . . . . .
o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict
A067538.
A116608 counts partitions by number of distinct parts.
Cf.
A111907,
A237755,
A240850,
A326849 A359897,
A360068,
A360071,
A360243,
A361848,
A361851,
A361852,
A361906.
Showing 1-10 of 14 results.
Comments