A361849
Number of integer partitions of n such that the maximum is twice the median.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 4, 3, 4, 7, 9, 9, 15, 16, 20, 26, 34, 37, 50, 55, 68, 86, 103, 117, 145, 168, 201, 236, 282, 324, 391, 449, 525, 612, 712, 818, 962, 1106, 1278, 1470, 1698, 1939, 2238, 2550, 2924, 3343, 3824, 4341, 4963, 5627, 6399, 7256, 8231, 9300
Offset: 1
The a(4) = 1 through a(11) = 9 partitions:
211 2111 21111 421 422 4221 631 632
3211 221111 4311 4222 5321
22111 2111111 2211111 42211 5411
211111 21111111 322111 42221
2221111 43211
22111111 332111
211111111 22211111
221111111
2111111111
For example, the partition (3,2,1,1) has maximum 3 and median 3/2, so is counted under a(7).
For minimum instead of median we have
A118096.
For length instead of median we have
A237753.
For mean instead of median we have
A361853.
These partitions have ranks
A361856.
For "greater" instead of "equal" we have
A361857, allowing equality
A361859.
A361860 counts partitions with minimum equal to median.
A361856
Positive integers whose prime indices satisfy (maximum) = 2*(median).
Original entry on oeis.org
12, 24, 42, 48, 60, 63, 72, 96, 126, 130, 140, 144, 189, 192, 195, 252, 266, 288, 308, 325, 330, 360, 378, 384, 399, 420, 432, 495, 546, 567, 572, 576, 588, 600, 630, 638, 650, 665, 756, 768, 819, 864, 882, 884, 931, 945, 957, 962, 975, 1122, 1134, 1152, 1190
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
42: {1,2,4}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
126: {1,2,2,4}
130: {1,3,6}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
The prime indices of 126 are {1,2,2,4}, with maximum 4 and median 2, so 126 is in the sequence.
The prime indices of 308 are {1,1,4,5}, with maximum 5 and median 5/2, so 308 is in the sequence.
The LHS (greatest prime index) is
A061395.
These partitions are counted by
A361849.
A000975 counts subsets with integer median.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@prix[#]==2*Median[prix[#]]&]
A361851
Number of integer partitions of n such that (length) * (maximum) <= 2*n.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 18, 23, 31, 37, 51, 58, 75, 96, 116, 126, 184, 193, 253, 307, 346, 402, 511, 615, 678, 792, 1045, 1088, 1386, 1419, 1826, 2181, 2293, 2779, 3568, 3659, 3984, 4867, 5885, 6407, 7732, 8124, 9400, 11683, 13025, 13269, 16216, 17774, 22016
Offset: 1
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (411) (421)
(2211) (2221)
(3111) (3211)
(21111) (22111)
(111111) (211111)
(1111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement of size 5, and 5 <= 7, so y is counted under a(7).
For length instead of mean we have
A237755.
For minimum instead of mean we have
A237824.
For median instead of mean we have
A361848.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A111907,
A237984,
A240219,
A324521,
A324562,
A327482,
A349156,
A360068,
A360071,
A360241,
A361394,
A361859.
A361855
Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum).
Original entry on oeis.org
28, 40, 78, 84, 171, 190, 198, 220, 240, 252, 280, 351, 364, 390, 406, 435, 714, 748, 756, 765, 777, 784, 814, 840, 850, 925, 988, 1118, 1197, 1254, 1330, 1352, 1419, 1425, 1440, 1505, 1564, 1600, 1638, 1716, 1755, 1794, 1802, 1820, 1950, 2067, 2204, 2254
Offset: 1
The terms together with their prime indices begin:
28: {1,1,4}
40: {1,1,1,3}
78: {1,2,6}
84: {1,1,2,4}
171: {2,2,8}
190: {1,3,8}
198: {1,2,2,5}
220: {1,1,3,5}
240: {1,1,1,1,2,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
The prime indices of 84 are {1,1,2,4}, with maximum 4, length 4, and sum 8, and 4*4 = 2*8, so 84 is in the sequence.
The prime indices of 120 are {1,1,1,2,3}, with maximum 3, length 5, and sum 8, and 3*5 != 2*8, so 120 is not in the sequence.
The prime indices of 252 are {1,1,2,2,4}, with maximum 4, length 5, and sum 10, and 4*5 = 2*10, so 252 is in the sequence.
The partition (5,2,2,1) with Heinz number 198 has diagram:
o o o o o
o o . . .
o o . . .
o . . . .
Since the partition and its complement (shown in dots) both have size 10, 198 is in the sequence.
A061395 gives greatest prime index.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],Max@@prix[#]*PrimeOmega[#]==2*Total[prix[#]]&]
A361908
Positive integers > 1 whose prime indices satisfy (maximum) = 2*(minimum).
Original entry on oeis.org
6, 12, 18, 21, 24, 36, 48, 54, 63, 65, 72, 96, 105, 108, 133, 144, 147, 162, 189, 192, 216, 288, 315, 319, 324, 325, 384, 432, 441, 455, 481, 486, 525, 567, 576, 648, 715, 731, 735, 768, 845, 864, 931, 945, 972, 1007, 1029, 1152, 1296, 1323, 1403, 1458, 1463
Offset: 1
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
36: {1,1,2,2}
48: {1,1,1,1,2}
54: {1,2,2,2}
63: {2,2,4}
65: {3,6}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
The RHS is 2*
A055396 (twice minimum).
The LHS is
A061395 (greatest prime index).
Partitions of this type are counted by
A118096.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
-
filter:= proc(n) local F,b;
if n::even then b:= padic:-ordp(n,3);
if b = 0 then return false else return n = 2^padic:-ordp(n,2) * 3^b fi
fi;
F:= ifactors(n)[2][..,1];
nops(F) >= 2 and numtheory:-pi(max(F)) = 2*numtheory:-pi(min(F))
end proc:
select(filter, [$1..2000]); # Robert Israel, Mar 11 2025
-
Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]==2*PrimePi[FactorInteger[#][[1,1]]]&]
A361906
Number of integer partitions of n such that (length) * (maximum) >= 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1
The a(6) = 2 through a(10) = 15 partitions:
(411) (511) (611) (621) (721)
(3111) (4111) (4211) (711) (811)
(31111) (5111) (5211) (5221)
(41111) (6111) (5311)
(311111) (42111) (6211)
(51111) (7111)
(321111) (42211)
(411111) (43111)
(3111111) (52111)
(61111)
(421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
The complement is counted by
A361852.
Reversing the inequality gives
A361851.
A051293 counts subsets with integer mean.
A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
A362046
Number of nonempty subsets of {1..n} with mean n/2.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 9, 8, 25, 23, 75, 68, 235, 213, 759, 695, 2521, 2325, 8555, 7941, 29503, 27561, 103129, 96861, 364547, 344003, 1300819, 1232566, 4679471, 4449849, 16952161, 16171117, 61790441, 59107889, 226451035, 217157068, 833918839, 801467551, 3084255127
Offset: 0
The a(2) = 1 through a(7) = 8 subsets:
{1} {1,2} {2} {1,4} {3} {1,6}
{1,3} {2,3} {1,5} {2,5}
{1,2,3} {1,2,3,4} {2,4} {3,4}
{1,2,6} {1,2,4,7}
{1,3,5} {1,2,5,6}
{2,3,4} {1,3,4,6}
{1,2,3,6} {2,3,4,5}
{1,2,4,5} {1,2,3,4,5,6}
{1,2,3,4,5}
Including the empty set gives
A133406.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A327481 counts subsets by integer mean.
-
Table[Length[Select[Subsets[Range[n]],Mean[#]==n/2&]],{n,0,15}]
A361852
Number of integer partitions of n such that (length) * (maximum) < 2n.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
For length instead of mean we have
A237754.
For median instead of mean we have
A361858.
The complement is counted by
A361906.
Reversing the inequality gives
A361907.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A027193,
A111907,
A116608,
A237824,
A237984,
A324517,
A327482,
A349156,
A360068,
A360071,
A361394.
A361909
Positive integers > 1 whose prime indices satisfy: (maximum) = 2*(length).
Original entry on oeis.org
3, 14, 21, 35, 49, 52, 78, 117, 130, 152, 182, 195, 228, 273, 286, 325, 338, 342, 380, 429, 455, 464, 507, 513, 532, 570, 637, 696, 715, 798, 836, 845, 855, 950, 988, 1001, 1044, 1160, 1183, 1184, 1197, 1254, 1292, 1330, 1425, 1444, 1482, 1566, 1573, 1624
Offset: 1
The terms together with their prime indices begin:
3: {2}
14: {1,4}
21: {2,4}
35: {3,4}
49: {4,4}
52: {1,1,6}
78: {1,2,6}
117: {2,2,6}
130: {1,3,6}
152: {1,1,1,8}
182: {1,4,6}
195: {2,3,6}
228: {1,1,2,8}
273: {2,4,6}
286: {1,5,6}
325: {3,3,6}
338: {1,6,6}
342: {1,2,2,8}
Without multiplying by 2 in the RHS, we have
A106529.
Partitions of this type are counted by
A237753.
The RHS is
A255201 (twice bigomega).
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
Showing 1-10 of 15 results.
Comments