cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A361853 Number of integer partitions of n such that (length) * (maximum) = 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions satisfying (maximum) = 2*(mean).
These are partitions whose diagram has the same size as its complement (see example).

Examples

			The a(6) = 2 through a(12) = 10 partitions:
  (411)   .  (4211)  (621)     (5221)   .  (822)
  (3111)             (321111)  (5311)      (831)
                               (42211)     (6222)
                               (43111)     (6321)
                                           (6411)
                                           (422211)
                                           (432111)
                                           (441111)
                                           (32211111)
                                           (33111111)
The partition y = (6,4,1,1) has diagram:
  o o o o o o
  o o o o . .
  o . . . . .
  o . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
		

Crossrefs

For minimum instead of mean we have A118096.
For length instead of mean we have A237753.
For median instead of mean we have A361849, ranks A361856.
This is the equal case of A361851, unequal case A361852.
The strict case is A361854.
These partitions have ranks A361855.
This is the equal case of A361906, unequal case A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#==2n&]],{n,30}]

A361851 Number of integer partitions of n such that (length) * (maximum) <= 2*n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 18, 23, 31, 37, 51, 58, 75, 96, 116, 126, 184, 193, 253, 307, 346, 402, 511, 615, 678, 792, 1045, 1088, 1386, 1419, 1826, 2181, 2293, 2779, 3568, 3659, 3984, 4867, 5885, 6407, 7732, 8124, 9400, 11683, 13025, 13269, 16216, 17774, 22016
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2023

Keywords

Comments

Also partitions such that (maximum) <= 2*(mean).
These are partitions whose complement (see example) has size <= n.

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (421)
                                     (2211)    (2221)
                                     (3111)    (3211)
                                     (21111)   (22111)
                                     (111111)  (211111)
                                               (1111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement of size 5, and 5 <= 7, so y is counted under a(7).
		

Crossrefs

For length instead of mean we have A237755.
For minimum instead of mean we have A237824.
For median instead of mean we have A361848.
The equal case for median is A361849, ranks A361856.
The unequal case is A361852, median A361858.
The equal case is A361853, ranks A361855.
Reversing the inequality gives A361906, unequal case A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<=2n&]],{n,30}]

A361858 Number of integer partitions of n such that the maximum is less than twice the median.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 8, 12, 15, 19, 22, 31, 34, 45, 55, 67, 78, 100, 115, 144, 170, 203, 238, 291, 337, 403, 473, 560, 650, 772, 889, 1046, 1213, 1414, 1635, 1906, 2186, 2533, 2913, 3361, 3847, 4433, 5060, 5808, 6628, 7572, 8615, 9835, 11158, 12698, 14394
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (322)      (71)
                                     (321)     (331)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (2222)
                                                          (3221)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8).
		

Crossrefs

For minimum instead of median we have A053263.
For length instead of median we have A237754.
Allowing equality gives A361848, strict A361850.
The equal version is A361849, ranks A361856.
For mean instead of median we have A361852.
Reversing the inequality gives A361857, ranks A361867.
The complement is counted by A361859, ranks A361868.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#<2*Median[#]&]],{n,30}]

A361906 Number of integer partitions of n such that (length) * (maximum) >= 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) >= 2*(mean).
These are partitions whose complement (see example) has size >= n.

Examples

			The a(6) = 2 through a(10) = 15 partitions:
  (411)   (511)    (611)     (621)      (721)
  (3111)  (4111)   (4211)    (711)      (811)
          (31111)  (5111)    (5211)     (5221)
                   (41111)   (6111)     (5311)
                   (311111)  (42111)    (6211)
                             (51111)    (7111)
                             (321111)   (42211)
                             (411111)   (43111)
                             (3111111)  (52111)
                                        (61111)
                                        (421111)
                                        (511111)
                                        (3211111)
                                        (4111111)
                                        (31111111)
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8).
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237752, reverse A237755.
For minimum instead of mean we have A237821, reverse A237824.
For median instead of mean we have A361859, reverse A361848.
The unequal case is A361907.
The complement is counted by A361852.
The equal case is A361853, ranks A361855.
Reversing the inequality gives A361851.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>=2n&]],{n,30}]

A361907 Number of integer partitions of n such that (length) * (maximum) > 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) > 2*(mean).
These are partitions whose complement (see example) has size > n.

Examples

			The a(7) = 3 through a(10) = 11 partitions:
  (511)    (611)     (711)      (721)
  (4111)   (5111)    (5211)     (811)
  (31111)  (41111)   (6111)     (6211)
           (311111)  (42111)    (7111)
                     (51111)    (52111)
                     (411111)   (61111)
                     (3111111)  (421111)
                                (511111)
                                (3211111)
                                (4111111)
                                (31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237751, reverse A237754.
For minimum instead of mean we have A237820, reverse A053263.
The complement is counted by A361851, median A361848.
Reversing the inequality gives A361852.
The equal version is A361853.
For median instead of mean we have A361857, reverse A361858.
Allowing equality gives A361906, median A361859.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>2n&]],{n,30}]

A361854 Number of strict integer partitions of n such that (length) * (maximum) = 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also strict partitions satisfying (maximum) = 2*(mean).
These are strict partitions where both the diagram and its complement (see example) have size n.

Examples

			The a(n) strict partitions for selected n (A..E = 10..14):
  n=9:  n=12:  n=14:  n=15:  n=16:  n=18:  n=20:  n=21:  n=22:
--------------------------------------------------------------
  621   831    7421   A32    8431   C42    A532   E43    B542
        6321          A41    8521   C51    A541   E52    B632
                                    9432   A631   E61    B641
                                    9531   A721          B731
                                    9621   85421         B821
                                           86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
  o o o o o o o o
  o o o o o . . .
  o o o o . . . .
  o o . . . . . .
  o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
		

Crossrefs

For minimum instead of mean we have A241035, non-strict A118096.
For length instead of mean we have A241087, non-strict A237753.
For median instead of mean we have A361850, non-strict A361849.
The non-strict version is A361853.
These partitions have ranks A361855 /\ A005117.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict A067538.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[#]*Max@@#==2n&]],{n,30}]

A363132 Number of integer partitions of 2n such that 2*(minimum) = (mean).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Equivalently, n = (length)*(minimum).

Examples

			The a(2) = 1 through a(7) = 14 partitions:
  (31)  (321)  (62)    (32221)  (93)      (3222221)
        (411)  (3221)  (33211)  (552)     (3322211)
               (3311)  (42211)  (642)     (3332111)
               (4211)  (43111)  (732)     (4222211)
               (5111)  (52111)  (822)     (4322111)
                       (61111)  (322221)  (4331111)
                                (332211)  (4421111)
                                (333111)  (5222111)
                                (422211)  (5321111)
                                (432111)  (5411111)
                                (441111)  (6221111)
                                (522111)  (6311111)
                                (531111)  (7211111)
                                (621111)  (8111111)
                                (711111)
		

Crossrefs

Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For (maximum) = 2*(mean) see A361851, A361852, A361853, A361854, A361855.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(46) from Chai Wah Wu, Sep 21 2023

A363221 Number of strict integer partitions of n such that (length) * (maximum) <= 2n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 19, 23, 26, 29, 37, 39, 49, 55, 62, 71, 84, 93, 108, 118, 141, 149, 188, 193, 217, 257, 279, 318, 369, 376, 441, 495, 572, 587, 692, 760, 811, 960, 1046, 1065, 1307, 1387, 1550, 1703, 1796, 2041, 2295, 2456, 2753, 3014
Offset: 1

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Also strict partitions such that (maximum) <= 2*(mean).
These are strict partitions whose complement (see A361851) has size <= n.

Examples

			The partition y = (4,3,1) has length 3 and maximum 4, and 3*4 <= 2*8, so y is counted under a(8). The complement of y has size 4, which is less than or equal to n = 8.
		

Crossrefs

The equal case for median is A361850, non-strict A361849 (ranks A361856).
The non-strict version is A361851, A361848 for median.
The equal case is A361854, non-strict A361853 (ranks A361855).
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Max@@#<=2*Mean[#]&]],{n,30}]
Showing 1-8 of 8 results.