cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert A. Russell

Robert A. Russell's wiki page.

Robert A. Russell has authored 218 sequences. Here are the ten most recent ones:

A385149 Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 43, 225, 1162, 6081, 32315, 174856, 961764, 5369567, 30373643, 173811011, 1004802212, 5861460314, 34468644574, 204161097084, 1217143092549, 7299002607829, 44005589820244, 266608357403244, 1622502342468552, 9914884364399700
Offset: 0

Author

Robert A. Russell, Jun 19 2025

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __
|__|__|__|  |__|__|__|  a(4) = 1.
      |__|  |__|
		

Crossrefs

Cf. A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A001764 (rooted).

Programs

  • Mathematica
    Table[If[n<4,0,(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1) + Switch[Mod[n,4], 0,4Binomial[3n/4,n/4]/(n/2+1)-6Binomial[3n/2,n/2]/(n+1), 1,(4Binomial[(3n-3)/4,(n-1)/4]-10Binomial[(3n-1)/2,(n-1)/2])/(n+1)+(8Binomial[(3n+1)/4,(n-1)/4]+16Binomial[(3n-3)/4,(n-5)/4])/(n+3), 2,16Binomial[(3n-2)/4,(n-2)/4]/(n+2)-6Binomial[3n/2,n/2]/(n+1), 3,24Binomial[(3n-1)/4,(n-3)/4]/(n+3)-10Binomial[(3n-1)/2,(n-1)/2]/(n+1)])/8],{n,0,30}]

Formula

G.f.: (3*G(z) - G(z)^2 - 6*G(z^2) - 5z*G(z^2)^2 + 4*G(z^4) + 2z*G(z^4) + 2z*G(z^4)^2 + 4z^2*G(z^4)^2 + 4z^3*G(z^4)^3 + 2z^5*G(z^4)^4) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764.

A371397 Number of chiral pairs of polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4}.

Original entry on oeis.org

0, 0, 0, 1, 6, 54, 416, 3111, 22898, 168460, 1242985, 9227333, 68949103, 518618196, 3925228596, 29879207817, 228630283775, 1757699977107, 13570824097968, 105182547181534, 818093724437992, 6383353614308209
Offset: 1

Author

Robert A. Russell, Mar 21 2024

Keywords

Comments

Also called polycubes. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			Polyominoes with cell centers at (0,0,0), (0,0,1), (0,1,1), (1,1,1) and (0,0,0), (0,1,0), (0,1,1), (1,1,1) are a chiral pair.
		

Crossrefs

Cf. A000162 (oriented), A038119 (unoriented), A007743 (achiral), A001931 (fixed).

Formula

a(n) = A000162(n) - A038119(n) = (A000162(n) - A007743(n))/2 = A038119(n) - A007743(n).

Extensions

a(17)-a(22) from John Mason, Sep 19 2024

A371351 Number of achiral polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 37, 73, 182, 364, 952, 1944, 5169, 10659, 28842, 60115, 164450, 345345, 953814, 2016144, 5609760, 11920740, 33378072, 71250060, 200553733, 429757960, 1215177680, 2612635888, 7416503776
Offset: 1

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of achiral simplicial 3-clusters or stack polytopes with n tetrahedral cells. An achiral polyomino is identical to its reflection.

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) in Beineke link.
Cf. A007173 (oriented), A027610 (oriented), A371350 (chiral), A001764 (rooted), A208355(n-1) {3,oo}, A182299 {3,3,3,oo}.

Programs

  • Mathematica
    Table[(If[OddQ[n],3Binomial[(3n-1)/2,n],2Binomial[3n/2,n]]+If[1==Mod[n,4],3Binomial[(3n-3)/4,(n-1)/2],0]+If[2==Mod[n,6],3Binomial[n/2-1,(n-2)/3],0])/(3n+3),{n,30}]

Formula

a(n) = ([0==n mod 2]*2*C(3n/2,n) + [1==n mod 2]*3*C((3n-1)/2,n) + [1==n mod4]*3*C((3n-3)/4,(n-1)/2) + [2==n mod6]*3*C(n/2-1,(n-2)/3)) / (3n+3).
a(n) = 2*A027610(n) - A007173(n) = A007173(n) - 2*A371350(n) = A027610(n) - A371350(n).
a(n) = 2*H(3,n) - h(3,n) in Table 8 of Hering link.
G.f.: (-4 + 4*G(z^2) + 3z*G(z^2)^2 + 3z*G(z^4) + 2z^2*G(z^6)) / 6, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764.

A371350 Number of chiral pairs of polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

0, 0, 0, 1, 3, 16, 78, 397, 2037, 10820, 58349, 320824, 1790189, 10125858, 57938771, 334941363, 1953830203, 11489589280, 68053757016, 405714603234, 2433001205088, 14668531344984, 88869454457853, 540834122500464
Offset: 1

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of chiral pairs of simplicial 3-clusters or stack polytopes with n tetrahedral cells. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Sum of chiral symmetry types (A047776, A047774, A047762, A047758, A047752, A047769, A047766 [type O]) in Beineke article.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A369314 {3,oo}, A369474 {3,3,3,oo}.

Programs

  • Mathematica
    Table[Switch[Mod[n,3],1,Binomial[n,(n-1)/3],2,Binomial[n,(n-2)/3],_,0]/(3n)+(Binomial[3n,n]/(6n+3)-If[OddQ[n],Binomial[3(n-1)/2+1,n],Binomial[3n/2,n]/3]-2If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/2],0]-2If[2==Mod[n,6],Binomial[n/2-1,n/3-2/3],0])/(4n+4),{n,30}]

Formula

a(n) = A007173(n) - A027610(n) = (A007173(n) - A371351(n))/2 = A027610(n) - A371351(n).
a(n) = h(3,n) - H(3,n) in Table 8 of Hering link.
G.f.: (4*G(z) - 2*G(z)^2 + z*G(z)^4 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*(4 G(z^3) + 2z*G(z^3)^2 - 3*G(z^4) - 2z*G(z^6))) / 24.

A369474 Number of chiral pairs of polyominoes composed of n pentachoral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,3,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 80, 611, 4602, 34791, 265606, 2054034, 16094883, 127693729, 1024649237, 8306343347, 67952829212, 560471786912, 4656785469564, 38948533963500, 327715193729107, 2772468576820531
Offset: 1

Author

Robert A. Russell, Mar 20 2024

Keywords

Comments

Also number of chiral pairs of simplicial 4-clusters or stack polytopes with n pentachoral cells. Each member of a chiral pair is a reflection but not a rotation of the other. Some of the h(4,n) terms in the Hering article are in error, including the 6th, 8th and 9th.

Crossrefs

Cf. A007175 (oriented), A182322 (oriented), A182299 (achiral), A002293 (rooted), A371350 {3,3,oo}.
This is the half the difference of A007175 and A182299, both of which have Mathematica programs.

Formula

a(n) = A007175(n) - A182322(n) = (A007175(n) - A182299(n))/2 = A182322(n) - A182299(n).
a(n) = h(4,n) - H(4,n) in Table 8 of Hering link.

A369473 Number of chiral pairs of polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}.

Original entry on oeis.org

7, 50, 448, 3810, 34200, 314655, 2982040, 28897440, 285577500, 2868769045, 29227672960, 301429078080, 3141983233130, 33059729519325, 350763428176480, 3749420512083472, 40348040467611800, 436827334389425980
Offset: 4

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A143546 (achiral), A369471 {5,oo}.

Programs

  • Mathematica
    p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]

Formula

a(n) = A221184(n-1) - A004127(n) = (A221184(n-1) - A143546(n)) / 2 = A004127(n) - A143546(n).

A369471 Number of chiral pairs of polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.

Original entry on oeis.org

4, 24, 172, 1144, 8056, 57800, 427006, 3221216, 24773668, 193592840, 1534006620, 12301987920, 99699269740, 815520435048, 6725987757744, 55882659600320, 467387108739408, 3932600291539096, 33269691987278258, 282863688830816184
Offset: 4

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {5,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Polyominoes: A005038 (oriented), A005040 (unoriented), A369472 (achiral), A369315 {4,oo}.

Programs

  • Mathematica
    p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]

Formula

a(n) = A005038(n) - A005040(n) = (A005038(n) - A369472(n)) / 2 = A005040(n) - A369472(n).

A369472 Number of achiral polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 52, 140, 340, 969, 2394, 7084, 17710, 53820, 135720, 420732, 1068012, 3362260, 8579560, 27343888, 70068713, 225568798, 580034052, 1882933364, 4855986044, 15875338990, 41043559340, 134993766600
Offset: 1

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {5,oo} tiling on the Poincaré disk can be obtained via the Christensson link.

Crossrefs

Column k=5 of A370060.
Polyominoes: A005038 (oriented), A005040 (unoriented), A369471 (chiral), A002293 (rooted), A047749 {4,oo}, A143546 {6,oo}.

Programs

  • Mathematica
    p=5; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,35}]

Formula

For n even, a(n) = C(2n,n/2)/(3n/2+1).
For n odd, a(n) = 4*C(2n-1,(n-1)/2)/(3n+1).
a(n+2)/a(n) ~ 256/27. a(2m+1)/a(2m) ~ 32/9; a(2m)/a(2m-1) ~ 8/3.
a(n) = 2*A005040(n) - A005038(n) = A005038(n) - 2*A369471(n) = A005040(n) - A369471(n).
G.f.: G(z^2)+z*G(z^2)^2, where G(z)=1+z*G(z)^4, the generating function for A002293.
a(2m) = A002293(m) ~ (4^4/3^3)^m*sqrt(4/(2*Pi*(3*m)^3)). - Robert A. Russell, Jul 15 2024

A369315 Number of chiral pairs of polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

2, 9, 48, 231, 1188, 6114, 32448, 175032, 962472, 5370524, 30377504, 173816313, 1004823816, 5861490300, 34468767840, 204161269620, 1217143807770, 7299003615537, 44005594027200, 266608363362900
Offset: 4

Author

Robert A. Russell, Jan 19 2024

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __     __ __          __ __
|__|__|__|  |__|__|__|   |__|__|__    __|__|__|  a(4) = 2.
      |__|  |__|            |__|__|  |__|__|
		

Crossrefs

Polyominoes: A005034 (oriented), A005036 (unoriented), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A369314 {3,oo}.

Programs

  • Mathematica
    p=4; Table[(Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n],If[OddQ[p],Binomial[(p-1)n/2,(n-1)/2]/n,(p+1)Binomial[((p-1)n-1)/2,(n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2,(n-1)/2]/((p-1)n+1)],Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&])/2,{n,4,30}]
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],6Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],2Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) = A005034(n) - A005036(n) = (A005034(n) - A047749(n)) / 2 = A005036(n) - A047749(n).
G.f.: (3*G(z) - G(z)^2 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*G(z^4)) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025

A369314 Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}.

Original entry on oeis.org

1, 2, 7, 22, 68, 214, 691, 2240, 7396, 24702, 83469, 284928, 981814, 3410990, 11939752, 42075308, 149180356, 531866972, 1905872189, 6861162880, 24805796984, 90035940942, 327988261992, 1198853954688, 4395798528850
Offset: 4

Author

Robert A. Russell, Jan 19 2024

Keywords

Comments

A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			________      ________   ________      ________   ________      ________
\  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /
 \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/
                           \  /          \  /           \  /  \  /
a(4)=1; a(5)=2.             \/            \/             \/    \/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A208355(n-1) (achiral).

Programs

  • Mathematica
    Table[Binomial[2n,n]/(2(n+1)(n+2))-If[OddQ[n],Binomial[n,(n+1)/2]/n,Binomial[n,n/2]/(n+2)]/2+If[Divisible[n-1,3],Binomial[(2n+1)/3,(n-1)/3]/(2n+1),0],{n,4,20}]

Formula

a(n) = C(2n,2)/(2(n+1)(n+2)) - [2\(n+1)]*C(n,(n+1)/2)/(2n) - [2\n]*C(n,n/2)/(2n+4) + [3\(n-1)]*C((2n+1)/3,(n-1)/3)/(2n+1).
a(n) = A001683(n+2) - A000207(n) = (A001683(n+2) - A208355(n-1)) / 2 = A000207(n) - A208355(n-1).