Robert A. Russell has authored 218 sequences. Here are the ten most recent ones:
A385149
Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.
Original entry on oeis.org
0, 0, 0, 0, 1, 8, 43, 225, 1162, 6081, 32315, 174856, 961764, 5369567, 30373643, 173811011, 1004802212, 5861460314, 34468644574, 204161097084, 1217143092549, 7299002607829, 44005589820244, 266608357403244, 1622502342468552, 9914884364399700
Offset: 0
__ __ __ __ __ __
|__|__|__| |__|__|__| a(4) = 1.
|__| |__|
-
Table[If[n<4,0,(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1) + Switch[Mod[n,4], 0,4Binomial[3n/4,n/4]/(n/2+1)-6Binomial[3n/2,n/2]/(n+1), 1,(4Binomial[(3n-3)/4,(n-1)/4]-10Binomial[(3n-1)/2,(n-1)/2])/(n+1)+(8Binomial[(3n+1)/4,(n-1)/4]+16Binomial[(3n-3)/4,(n-5)/4])/(n+3), 2,16Binomial[(3n-2)/4,(n-2)/4]/(n+2)-6Binomial[3n/2,n/2]/(n+1), 3,24Binomial[(3n-1)/4,(n-3)/4]/(n+3)-10Binomial[(3n-1)/2,(n-1)/2]/(n+1)])/8],{n,0,30}]
A371397
Number of chiral pairs of polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4}.
Original entry on oeis.org
0, 0, 0, 1, 6, 54, 416, 3111, 22898, 168460, 1242985, 9227333, 68949103, 518618196, 3925228596, 29879207817, 228630283775, 1757699977107, 13570824097968, 105182547181534, 818093724437992, 6383353614308209
Offset: 1
Polyominoes with cell centers at (0,0,0), (0,0,1), (0,1,1), (1,1,1) and (0,0,0), (0,1,0), (0,1,1), (1,1,1) are a chiral pair.
Component symmetries:
A376964,
A376965,
A376966,
A376967,
A376968,
A376975,
A376976,
A376982,
A377127,
A377128,
A377131.
A371351
Number of achiral polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 15, 37, 73, 182, 364, 952, 1944, 5169, 10659, 28842, 60115, 164450, 345345, 953814, 2016144, 5609760, 11920740, 33378072, 71250060, 200553733, 429757960, 1215177680, 2612635888, 7416503776
Offset: 1
-
Table[(If[OddQ[n],3Binomial[(3n-1)/2,n],2Binomial[3n/2,n]]+If[1==Mod[n,4],3Binomial[(3n-3)/4,(n-1)/2],0]+If[2==Mod[n,6],3Binomial[n/2-1,(n-2)/3],0])/(3n+3),{n,30}]
A371350
Number of chiral pairs of polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.
Original entry on oeis.org
0, 0, 0, 1, 3, 16, 78, 397, 2037, 10820, 58349, 320824, 1790189, 10125858, 57938771, 334941363, 1953830203, 11489589280, 68053757016, 405714603234, 2433001205088, 14668531344984, 88869454457853, 540834122500464
Offset: 1
-
Table[Switch[Mod[n,3],1,Binomial[n,(n-1)/3],2,Binomial[n,(n-2)/3],_,0]/(3n)+(Binomial[3n,n]/(6n+3)-If[OddQ[n],Binomial[3(n-1)/2+1,n],Binomial[3n/2,n]/3]-2If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/2],0]-2If[2==Mod[n,6],Binomial[n/2-1,n/3-2/3],0])/(4n+4),{n,30}]
A369474
Number of chiral pairs of polyominoes composed of n pentachoral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,3,oo}.
Original entry on oeis.org
0, 0, 0, 0, 1, 10, 80, 611, 4602, 34791, 265606, 2054034, 16094883, 127693729, 1024649237, 8306343347, 67952829212, 560471786912, 4656785469564, 38948533963500, 327715193729107, 2772468576820531
Offset: 1
This is the half the difference of
A007175 and
A182299, both of which have Mathematica programs.
A369473
Number of chiral pairs of polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}.
Original entry on oeis.org
7, 50, 448, 3810, 34200, 314655, 2982040, 28897440, 285577500, 2868769045, 29227672960, 301429078080, 3141983233130, 33059729519325, 350763428176480, 3749420512083472, 40348040467611800, 436827334389425980
Offset: 4
-
p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]
A369471
Number of chiral pairs of polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.
Original entry on oeis.org
4, 24, 172, 1144, 8056, 57800, 427006, 3221216, 24773668, 193592840, 1534006620, 12301987920, 99699269740, 815520435048, 6725987757744, 55882659600320, 467387108739408, 3932600291539096, 33269691987278258, 282863688830816184
Offset: 4
-
p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]
A369472
Number of achiral polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.
Original entry on oeis.org
1, 1, 2, 4, 9, 22, 52, 140, 340, 969, 2394, 7084, 17710, 53820, 135720, 420732, 1068012, 3362260, 8579560, 27343888, 70068713, 225568798, 580034052, 1882933364, 4855986044, 15875338990, 41043559340, 134993766600
Offset: 1
-
p=5; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,35}]
A369315
Number of chiral pairs of polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}.
Original entry on oeis.org
2, 9, 48, 231, 1188, 6114, 32448, 175032, 962472, 5370524, 30377504, 173816313, 1004823816, 5861490300, 34468767840, 204161269620, 1217143807770, 7299003615537, 44005594027200, 266608363362900
Offset: 4
__ __ __ __ __ __ __ __ __ __
|__|__|__| |__|__|__| |__|__|__ __|__|__| a(4) = 2.
|__| |__| |__|__| |__|__|
-
p=4; Table[(Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n],If[OddQ[p],Binomial[(p-1)n/2,(n-1)/2]/n,(p+1)Binomial[((p-1)n-1)/2,(n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2,(n-1)/2]/((p-1)n+1)],Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&])/2,{n,4,30}]
Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],6Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],2Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)
A369314
Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}.
Original entry on oeis.org
1, 2, 7, 22, 68, 214, 691, 2240, 7396, 24702, 83469, 284928, 981814, 3410990, 11939752, 42075308, 149180356, 531866972, 1905872189, 6861162880, 24805796984, 90035940942, 327988261992, 1198853954688, 4395798528850
Offset: 4
________ ________ ________ ________ ________ ________
\ /\ /\ /\ /\ / \ /\ /\ /\ /\ / \ /\ /\ /\ /\ /
\/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/
\ / \ / \ / \ /
a(4)=1; a(5)=2. \/ \/ \/ \/
-
Table[Binomial[2n,n]/(2(n+1)(n+2))-If[OddQ[n],Binomial[n,(n+1)/2]/n,Binomial[n,n/2]/(n+2)]/2+If[Divisible[n-1,3],Binomial[(2n+1)/3,(n-1)/3]/(2n+1),0],{n,4,20}]
Comments