A038119
Number of n-celled solid polyominoes (or free polycubes, allowing mirror-image identification).
Original entry on oeis.org
1, 1, 2, 7, 23, 112, 607, 3811, 25413, 178083, 1279537, 9371094, 69513546, 520878101, 3934285874, 29915913663, 228779330204, 1758309223457, 13573319825615, 105192814197984, 818136047201932, 6383528588447574
Offset: 1
- S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
- W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972. [See https://books.google.nl/books?id=ja7iBQAAQBAJ&pg=PA101]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf. for each symmetry:
A376964,
A376965,
A376966,
A376967,
A376968,
A376969,
A376970,
A376972,
A376973,
A376974,
A376975,
A376976,
A376977,
A376978,
A376979,
A376980,
A376981,
A376982,
A376983,
A377127,
A376984,
A376985,
A376986,
A376987,
A376988,
A376989,
A377128,
A376990,
A376991,
A377129,
A377130,
A377131,
A376971
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A000162 = A@000162;
A007743 = A@007743;
a[n_] := (A007743[[n]] + A000162[[n]])/2;
a /@ Range[16] (* Jean-François Alcover, Jan 16 2020 *)
More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Jan 02 2002
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A000162
Number of 3-dimensional polyominoes (or polycubes) with n cells.
Original entry on oeis.org
1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, 2522522, 18598427, 138462649, 1039496297, 7859514470, 59795121480, 457409613979, 3516009200564, 27144143923583, 210375361379518, 1636229771639924, 12766882202755783
Offset: 1
Table showing total number and numbers with each group order.
-------------------------------------------------------------
The last 7 columns form sequences A066453, A066454, A066273, A066281, A066283, A066287, A066288.
.n ...A000162 ..group:.1.....2...3...4.6.8.24
.1 .........1..........0.....0...0...0.0.0..1
.2 .........1..........0.....0...0...0.0.1..0
.3 .........2..........0.....1...0...0.0.1..0
.4 .........8..........1.....4...1...0.0.2..0
.5 ........29.........17....10...0...0.0.2..0
.6 .......166........127....34...0...3.1.1..0
.7 ......1023........941....71...4...5.0.1..1
.8 ......6922.......6662...246...0..11.0.2..1
.9 .....48311......47771...522...3..11.0.4..0
10 ....346543.....344708..1783..24..24.2.2..0
11 ...2522522....2518713..3765...4..35.0.5..0
12 ..18598427...18585455.12858..18..84.5.7..0
13 .138462649..138434899.27496.151..92.2.8..1
14 1039496297.1039401564.94525..25.174.4.5..0
- C. J. Bouwkamp, personal communication.
- W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- W. F. Lunnon, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Nina Bohlmann and Ralf Benölken, Complex Tasks: Potentials and Pitfalls, Mathematics (2020) Vol. 8, No. 10, 1780.
- C. J. Bouwkamp, A. J. W. Duijvestijn, & N. J. A. Sloane, Correspondence, 1971.
- A. Clarke, Polycubes.
- A. Clarke, The 8 tetracubes.
- Stanley Dodds, C# program for this sequence.
- Kevin L. Gong, Polyominoes Home Page.
- M. Keller, Counting polyforms.
- David A. Klarner, Some results concerning polyominoes, Fibonacci Quarterly 3 (1965), 9-20.
- Jeffrey R. Long and R. H. Holm, Enumeration and structural classification of clusters derived from parent solids ..., J. Amer. Chem. Soc., 116 (1994), 9987-10002.
- John Mason, Coordinate sets of examples of polycube symmetry (version 2)
- Phillip Thompson, Rust port of Stanley Dodds's algorithm.
- Eric Weisstein's World of Mathematics, Polycube.
The old value for a(11), 2522572, was corrected by
Achim Flammenkamp to 2522522, Feb 15 1999.
a(13)-a(14) from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 27 2001
a(15)-a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A007743
Number of achiral polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4} (or polycubes).
Original entry on oeis.org
1, 1, 2, 6, 17, 58, 191, 700, 2515, 9623, 36552, 143761, 564443, 2259905, 9057278, 36705846, 149046429, 609246350, 2495727647, 10267016450, 42322763940, 174974139365
Offset: 1
Arlin Anderson (starship1(AT)gmail.com)
Component symmetries:
A376969,
A376970,
A376971,
A376972,
A376973,
A376974,
A376977,
A376978,
A376979,
A376980,
A376981,
A376983,
A376984,
A376985,
A376986,
A376987,
A376988,
A376989,
A376990,
A376991,
A377129,
A377130.
a(13)-a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
Changed "symmetric" to "mirror-symmetric" in the title by
George Sicherman, Feb 21 2018
Changed "mirror-symmetric" to "achiral" in the title to ensure that a plane of symmetry is not required. -
Robert A. Russell, Mar 21 2024
Showing 1-3 of 3 results.
Comments