A007042
Left diagonal of partition triangle A047812.
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 20, 28, 40, 54, 75, 99, 133, 174, 229, 295, 383, 488, 625, 790, 1000, 1253, 1573, 1956, 2434, 3008, 3716, 4563, 5602, 6840, 8347, 10141, 12308, 14881, 17975, 21635, 26013, 31183, 37336, 44581, 53172, 63259, 75173, 89132, 105556, 124752
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Govindarajan, Notes on higher-dimensional partitions, arXiv:1203.4419 [math.CO], 2012.
- R. K. Guy, Letter to N. J. A. Sloane, Aug. 1992.
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Preprint, 1992. (Annotated scanned copy)
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
-
using Nemo
function A007042List(len)
R, z = PolynomialRing(ZZ, "z")
e = eta_qexp(-1, len+2, z)
[coeff(e, j) - 2 for j in 2:len+1] end
A007042List(45) |> println # Peter Luschny, May 30 2020
-
f[n_]:= Length[Select[IntegerPartitions[2 n], First[#]==n-1 &]]; Table[f[n], {n, 1, 24}] (* Clark Kimberling, Mar 13 2012 *)
a[n_]:= PartitionsP[n+1]-2; Table[a[n], {n,1,50}] (* Jean-François Alcover, Jan 28 2015, after M. F. Hasler *)
-
A007042(n)=numbpart(n+1)-2 \\ M. F. Hasler, Apr 12 2012
A022818
Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1
Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 6, 10, 15, 21, 28, 36, ...
1, 5, 13, 26, 45, 71, 105, 148, ...
1, 7, 23, 55, 110, 196, 322, 498, ...
1, 11, 44, 121, 271, 532, 952, 1590, ...
1, 15, 74, 237, 599, 1301, 2541, 4586, ...
1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
...
- Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
- Alois P. Heinz, Antidiagonals n = 1..141
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245. [Take the transpose of Table 2 on p. 241 and omit row 0 and column 0; A(n,k) = M(k,n). - _Petros Hadjicostas_, May 30 2020]
-
A:= proc(n, k) option remember;
`if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
end:
b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
# second Maple program:
b:= proc(n, i, l, k) option remember; `if`(k=0,
`if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 19 2018
-
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
-
P(n, k) = #partitions(n-k, k); /* A008284 */
tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020
A039809
For n > 1, a(n) doubles under the transform T, where Ta is the matrix product of partition triangle A008284 with a, with a(1) = 1.
Original entry on oeis.org
1, 1, 2, 5, 12, 32, 83, 223, 594, 1600, 4297, 11589, 31216, 84212, 227091, 612712, 1652913, 4459962, 12033405, 32469682, 87611105, 236402465, 637884103, 1721218224, 4644392797, 12532091909, 33815653370, 91245738923
Offset: 1
So a(7) = T(7,1)*a(1) + T(7,2)*a(2) + ... + T(7,6)*a(6) = 1*1 + 3*1 + 4*2 + 3*5 + 2*12 + 1*32 = 1 + 3 + 8 + 15 + 24 + 32 = 83, where T(n,k) = A008284(n,k).
-
P(n, k) = #partitions(n-k, k); /* A008284 */
lista(nn) = {my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = sum(i=1, n-1, P(n,i)*a[i])); a;} \\ Petros Hadjicostas, May 30 2020
Showing 1-3 of 3 results.
Comments