A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.
1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1
Examples
Triangle begins: ----|------------------------------------------------------------ n\m | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ----|------------------------------------------------------------ 1 | 1 2 | - - 4 1 3 | - - - - 81 78 36 9 1 4 | - - - - - - 4096 8424 9552 7464 4272 1812 560 120 16 1
Crossrefs
Cf. A005333 (row sums?).
Programs
-
Python
from math import comb as binomial def f(x, a, b, k): if b == k == 0: return 1 if b == 0 or k == 0: return 0 if x == a: return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1)) return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2) for n in range(1, b + 1) for k2 in range(0, k + 1) ) def a(n, m): return f(1, n, n, m) for n in range(1, 5): print([a(n, m) for m in range(1, n * n + 1)])
Comments