cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Dybdahl Ahle

Thomas Dybdahl Ahle's wiki page.

Thomas Dybdahl Ahle has authored 5 sequences.

A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.

Original entry on oeis.org

1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1

Author

Thomas Dybdahl Ahle, Feb 16 2015

Keywords

Comments

m ranges from 2n-1 to n^2.
First column is A068087.

Examples

			Triangle begins:
----|------------------------------------------------------------
n\m |  1 2 3 4  5  6    7    8    9   10   11   12  13  14 15 16
----|------------------------------------------------------------
1   |  1
2   |  - - 4 1
3   |  - - - - 81 78   36    9    1
4   |  - - - -  -  - 4096 8424 9552 7464 4272 1812 560 120 16  1
		

Crossrefs

Cf. A005333 (row sums?).

Programs

  • Python
    from math import comb as binomial
    def f(x, a, b, k):
        if b == k == 0:
            return 1
        if b == 0 or k == 0:
            return 0
        if x == a:
            return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
        return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
            for n in range(1, b + 1) for k2 in range(0, k + 1) )
    def a(n, m):
        return f(1, n, n, m)
    for n in range(1, 5):
        print([a(n, m) for m in range(1, n * n + 1)])

Formula

Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums.

A239288 Maximal sum of x0 + x0*x1 + ... + x0*x1*...*xk over all compositions x0 + ... + xk = n.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 15, 22, 33, 48, 69, 102, 147, 210, 309, 444, 633, 930, 1335, 1902, 2793, 4008, 5709, 8382, 12027, 17130, 25149, 36084, 51393, 75450, 108255, 154182, 226353, 324768, 462549, 679062, 974307, 1387650, 2037189, 2922924, 4162953, 6111570
Offset: 0

Author

Thomas Dybdahl Ahle, Jun 13 2014

Keywords

Comments

This sequence comes up in the analysis of exact algorithms for maximum independent sets.

Examples

			For n = 4 there are three solutions, all summing to 6: 3+3*1, 2+2*1+2*1*1, 2+2*2.
For n = 7 there is only one solution: 2 + 2*2 + 2*2*2 + 2*2*2*1.
		

Programs

  • Maple
    mulprod := proc(L)
        local i,k ;
        add(mul(op(k,L),k=1..i),i=1..nops(L)) ;
    end proc:
    A239288 := proc(n)
        a := 0 ;
        for pa in combinat[partition](n) do
            for pe in combinat[permute](pa) do
                f := mulprod(pe) ;
                a := max(a,f) ;
            end do:
        end do:
        return a;
    end proc: # R. J. Mathar, Jul 03 2014

Formula

a(0) = 0, a(n) = max{k + k*a(n - k) | 1 <= k <= n}.
For n >= 8 the solution becomes cyclic: a(3n + k) = 3 + 3a(3n - 3 + k).
G.f.: -x*(x^2+x+1)*(x^5-2*x^4+2*x^3-x^2-1) / ((x-1)*(3*x^3-1)). - Joerg Arndt

A217595 Number of free n-celled polyominoes without holes and odd side lengths.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 12, 35, 55, 144, 335, 710, 1791, 4195
Offset: 1

Author

Thomas Dybdahl Ahle, May 28 2013

Keywords

Comments

If you checkerboard color the vertices of the square lattice, a(n) is the number of orthogonal polygons of area n, which alternates between white and black vertices.

Examples

			For n=5 the a(5)=2 pentominoes are 'I' and 'X'.
		

Extensions

a(10) from Giovanni Resta, Jun 06 2013
a(11)-a(12) from Thomas Dybdahl Ahle, Nov 13 2019
a(13)-a(15) from Aurélien Ooms, Nov 14-19 2019

A188816 Triangle read by rows: row n gives (coefficients * (n-1)!) in expansion of pieces k=0..n-1 of the probability mass function for the Irwin-Hall distribution, lowest powers first.

Original entry on oeis.org

1, 0, 1, 2, -1, 0, 0, 1, -3, 6, -2, 9, -6, 1, 0, 0, 0, 1, 4, -12, 12, -3, -44, 60, -24, 3, 64, -48, 12, -1, 0, 0, 0, 0, 1, -5, 20, -30, 20, -4, 155, -300, 210, -60, 6, -655, 780, -330, 60, -4, 625
Offset: 1

Author

Thomas Dybdahl Ahle, Apr 11 2011

Keywords

Comments

This is the probability distribution for the sum of n independent, random variables, each uniformly distributed on [0,1).

Examples

			For n = 4, k = 1 (four variables, second piece) the function is the polynomial: 1/6 * (4 - 12x + 12x^2 -3x^3). That gives the subsequence [4, -12, 12, -3].
Triangle begins:
  [1];
  [0,1], [2,-1];
  [0,0,1], [-3,6,-2], [9,-6,1];
  ...
		

Crossrefs

Differentiation of A188668.

Programs

  • Maple
    f:= proc(n, k) option remember;
           add((-1)^j * binomial(n, j) * (x-j)^(n-1), j=0..k)
        end:
    T:= (n, k)-> seq(coeff(f(n, k), x, t), t=0..n-1):
    seq(seq(T(n, k), k=0..n-1), n=1..7);  # Alois P. Heinz, Jul 06 2017
  • Mathematica
    f[n_, k_] := f[n, k] = Sum[(-1)^j Binomial[n, j] (x-j)^(n-1), {j, 0, k}];
    T[n_, k_] := Table[Coefficient[f[n, k], x, t], {t, 0, n-1}];
    Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 7}] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)

Formula

G.f. for piece k in row n: (1/(n-1)!) * Sum_{j=0..k} (-1)^j * C(n,j) * (x-j)^(n-1).

A188668 Triangle read by rows: row n gives (coefficients * n!) in expansion of pieces k=0..n-1 of the cumulative distribution function for the Irwin-Hall distribution, lowest powers first.

Original entry on oeis.org

0, 1, 0, 0, 1, -2, 4, -1, 0, 0, 0, 1, 3, -9, 9, -2, -21, 27, -9, 1, 0, 0, 0, 0, 1, -4, 16, -24, 16, -3, 92, -176, 120, -32, 3, -232, 256, -96, 16, -1, 0, 0, 0, 0, 0, 1, 5, -25, 50, -50, 25, -4, -315, 775, -750, 350, -75, 6, 2115, -3275, 1950, -550, 75, -4, -3005, 3125, -1250, 250, -25, 1
Offset: 1

Author

Thomas Dybdahl Ahle, Apr 07 2011

Keywords

Comments

This is the probability distribution for the sum of n independent, random variables, each uniformly distributed on [0,1).

Examples

			For n = 3, k = 2 (three variables, third piece) the distribution is the polynomial: 1/6 * (1*(x-0)^3 - 3*(x-1)^3 + 3*(x-2)^3) = 1/6 * (-21 + 27*x - 9*x^2 + x^3). That gives the subsequence [-21, 27, -9, 1].
Triangle begins:
  [0, 1];
  [0, 0, 1], [-2, 4, -1];
  [0, 0, 0, 1], [3, -9, 9, -2], [-21, 27, -9, 1];
  ...
		

Programs

  • Maple
    f:= proc(n, k) option remember;
           add((-1)^j * binomial(n, j) * (x-j)^n, j=0..k)
        end:
    T:= (n, k)-> seq(coeff(f(n, k), x, t), t=0..n):
    seq(seq(T(n, k), k=0..n-1), n=1..7);  # Alois P. Heinz, Apr 09 2011
  • Mathematica
    f[n_, k_] := f[n, k] = Sum[(-1)^j*Binomial[n, j]*(x-j)^n, {j, 0, k}]; T[n_, k_] := Table[Coefficient[f[n, k], x, t], {t, 0, n}]; Table[T[n, k], {n, 1, 7}, { k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)

Formula

G.f. for piece k in row n: (1/n!) * Sum_{j=0..k} (-1)^j * C(n,j) * (x-j)^n.