cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A306187 Number of n-times partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 65, 371, 3780, 33552, 472971, 5736082, 97047819, 1547576394, 32992294296, 626527881617, 15202246707840, 352290010708120, 9970739854456849, 262225912049078193, 8309425491887714632, 250946978120046026219, 8898019305511325083149
Offset: 0

Views

Author

Alois P. Heinz, Jan 27 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n. The only 0-times partition of n is the number n itself. - Gus Wiseman, Jan 27 2019

Examples

			From _Gus Wiseman_, Jan 27 2019: (Start)
The a(1) = 1 through a(3) = 10 partitions:
  (1)  ((2))     (((3)))
       ((11))    (((21)))
       ((1)(1))  (((111)))
                 (((2)(1)))
                 (((11)(1)))
                 (((2))((1)))
                 (((1)(1)(1)))
                 (((11))((1)))
                 (((1)(1))((1)))
                 (((1))((1))((1)))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..25);
  • Mathematica
    ptnlevct[n_,k_]:=Switch[k,0,1,1,PartitionsP[n],_,SeriesCoefficient[Product[1/(1-ptnlevct[m,k-1]*x^m),{m,n}],{x,0,n}]];
    Table[ptnlevct[n,n],{n,0,8}] (* Gus Wiseman, Jan 27 2019 *)

Formula

a(n) = A323718(n,n).

A096801 Triangle, read by rows, that transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for fixed m.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 7, 3, 1, 1, 0, 26, 10, 4, 1, 1, 0, 124, 44, 13, 5, 1, 1, 0, 640, 218, 68, 16, 6, 1, 1, 0, 3695, 1208, 332, 99, 19, 7, 1, 1, 0, 23231, 7403, 2100, 457, 138, 22, 8, 1, 1, 0, 156572, 48663, 12566, 3518, 579, 186, 25, 9, 1, 1, 0, 1133838, 346636
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Transforms any diagonal of A096751 (square table of n-dimensional partitions) into the next lower diagonal in the table. It is not yet certain if this triangle contains negative terms.

Examples

			The main diagonal of A096751: {1,1,3,10,45,216,...} (A096752),
is transformed into the secondary diagonal: {1,1,4,15,71,357,...},
as demonstrated by the dot product of row #5 with A096752:
[0,26,10,4,1,1]*[1,1,3,10,45,216] = 357.
Rows begin:
[1],
[0,1],
[0,1,1],
[0,2,1,1],
[0,7,3,1,1],
[0,26,10,4,1,1],
[0,124,44,13,5,1,1],
[0,640,218,68,16,6,1,1],
[0,3695,1208,332,99,19,7,1,1],
[0,23231,7403,2100,457,138,22,8,1,1],
[0,156572,48663,12566,3518,579,186,25,9,1,1],
[0,1133838,346636,94878,18043,5787,679,244,28,10,1,1],
[0,8635777,2590866,623351,188962,20539,9391,733,313,31,11,1,1],
[0,70212042,20875236,5828851,762072,398052,13238,15009,712,394,34,12,1,1],...
		

Crossrefs

Cf. A096751, A096752, A096802 (row sums), A096803-A096805 (columns).

A096753 Antidiagonal sums of table A096751.

Original entry on oeis.org

1, 2, 3, 5, 9, 18, 38, 85, 198, 478, 1192, 3063, 8093, 21956, 61087
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Crossrefs

A096802 Row sums of triangle A096801, which transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for any fixed m.

Original entry on oeis.org

1, 1, 2, 4, 12, 42, 188, 950, 5362, 33361, 222120, 1600145, 12069976, 98105654
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Crossrefs

A096803 Column 1 of triangle A096801, which transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for any fixed m.

Original entry on oeis.org

1, 1, 2, 7, 26, 124, 640, 3695, 23231, 156572, 1133838, 8635777, 70212042
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Crossrefs

A096805 Column 3 of triangle A096801, which transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for any fixed m.

Original entry on oeis.org

1, 1, 4, 13, 68, 332, 2100, 12566, 94878, 623351, 5828851
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Crossrefs

A096804 Column 2 of triangle A096801, which transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for any fixed m.

Original entry on oeis.org

1, 1, 3, 10, 44, 218, 1208, 7403, 48663, 346636, 2590866, 20875236
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Crossrefs

Showing 1-8 of 8 results.