A096807 Row sums of triangle A096806, in which the binomial transform of the n-th row lists the m-dimensional partitions of n, for n>=1 and m>=0.
1, 2, 4, 10, 26, 78, 246, 844, 3062, 11782, 47664, 202254, 896462, 4139514
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
n-th row lists n-dimensional partitions; table begins with n=0: [1,1,1,1,1,1,1,1,1,1,1,1,...], [1,1,2,3,5,7,11,15,22,30,42,56,...], [1,1,3,6,13,24,48,86,160,282,500,859,...], [1,1,4,10,26,59,140,307,684,1464,3122,...], [1,1,5,15,45,120,326,835,2145,5345,...], [1,1,6,21,71,216,657,1907,5507,15522,...], [1,1,7,28,105,357,1197,3857,12300,38430,...], [1,1,8,36,148,554,2024,7134,24796,84625,...], [1,1,9,45,201,819,3231,12321,46209,170370,...], [1,1,10,55,265,1165,4927,20155,80920,...],... Array begins: k=0: k=1: k=2: k=3: k=4: k=5: k=6: k=7: k=8: n=0: 1 1 1 1 1 1 1 1 1 n=1: 1 1 2 3 5 7 11 15 22 n=2: 1 1 3 6 13 24 48 86 160 n=3: 1 1 4 10 26 59 140 307 684 n=4: 1 1 5 15 45 120 326 835 2145 n=5: 1 1 6 21 71 216 657 1907 5507 n=6: 1 1 7 28 105 357 1197 3857 12300 n=7: 1 1 8 36 148 554 2024 7134 24796 n=8: 1 1 9 45 201 819 3231 12321 46209 n=9: 1 1 10 55 265 1165 4927 20155 80920
trans[x_]:=If[x=={},{},Transpose[x]]; levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]]; Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)
Table starts: 1, 0,1, 0,1,1, 0,1,3,1, 0,1,5,6,1, ...
A116672 begins 1; 1,1; 1,2,1; 1,4,4,1; 1,6,11,7,1; 1,10,27,29,12,1; 1,14,57,96,72,21,1; 1,21,117,277,319,176,38,1; . . . so A116673 begins 1 2 4 10 26 80 262 950 ...
First few rows of the triangle = 1; 3, 1; 2, 1, 1; 2, 2, 3, 1; 2, 0, 0, 1, 1; 2, 2, 0, 0, 3, 1; 2, 0, 2, 0, 2, 1, 1; 2, 2, 2, 2, 2, 2, 3, 1; 2, 0, 0, 0, 0, 0, 0, 1, 1; 2, 2, 0, 0, 0, 0, 0, 0, 3, 1; 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 1; 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 3, 1; 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1; 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 1; 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1; 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1; 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1; 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1; 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1; ...
Comments