A096806 Triangle, read by rows, such that the binomial transform of the n-th row lists the m-dimensional partitions of n, for n>=1 and m>=0.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 28, 11, 1, 1, 14, 57, 93, 64, 16, 1, 1, 21, 117, 269, 282, 131, 22, 1, 1, 29, 223, 707, 1062, 766, 244, 29, 1, 1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1, 1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1, 1, 76
Offset: 1
Examples
The number of m-dimensional partitions of 5, for m>=0, is given by the binomial transform of the 5th row: BINOMIAL([1,6,11,7,1]) = [1,7,24,59,120,216,357,554,819,1165,...] = A008779. Rows begin: [1], [1, 1], [1, 2, 1], [1, 4, 4, 1], [1, 6, 11, 7, 1], [1, 10, 27, 28, 11, 1], [1, 14, 57, 93, 64, 16, 1], [1, 21, 117, 269, 282, 131, 22, 1], [1, 29, 223, 707, 1062, 766, 244, 29, 1], [1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1], [1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1], [1, 76,1326, 9219, 31828, 58975, 59433, 31802, 8483, 1054, 56, 1], [1,100,2284,20095, 87490,207735, 276230, 204072, 80664, 16162, 1561, 67, 1], [1,134,3898,42707,230737,687665,1173533,1148939,632478,188077,29031,2234,79,1], ... The inverse binomial transform of the diagonals of this triangle begin: [1], [1, 1, 1], [1, 3, 4, 6, 3], [1, 5, 16, 29, 49, 45, 15], [1, 9, 38, 127, 289, 540, 660, 420, 105], [1,13, 90, 397,1384, 3633, 7506, 10920,9765,4725,945], [1,20,182,1140,5266,19324,55645,125447, ? , ? , ? ,62370,10395], ...
Links
- S. Govindarajan, Notes on higher-dimensional partitions, arXiv:1203.4419 [math.CO], 2012.
Crossrefs
Formula
T(n, 0)=T(n, n-1)=1, T(n, 1)=A000041(n)-1, T(n, n-2)=(n-1)*(n-2)/2+1, for n>=1.
Comments