cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Creighton Dement

Creighton Dement's wiki page.

Creighton Dement has authored 314 sequences. Here are the ten most recent ones:

A308496 Numbers with digits 1,2,4,7 when written in base 8.

Original entry on oeis.org

1, 2, 4, 7, 9, 10, 12, 15, 17, 18, 20, 23, 33, 34, 36, 39, 57, 58, 60, 63, 73, 74, 76, 79, 81, 82, 84, 87, 97, 98, 100, 103, 121, 122, 124, 127, 137, 138, 140, 143, 145, 146, 148, 151, 161, 162, 164, 167, 185, 186, 188, 191, 265, 266, 268, 271, 273
Offset: 1

Author

Creighton Dement, Jun 01 2019

Keywords

Comments

Floretions of all orders. - Creighton Dement, Oct 28 2022
For any natural number n, the set of terms of this sequence between indices (4^n-1)/3 and (4^(n+1)-4)/3 is "isomorphic" to the group of n-th order floretions. In this case, group multiplication is given by bitwise logical operations (see EXAMPLE). Note that the case of n = 1 is simply the quaternions.
In the table below, the left column is the binary representation, the middle column the terms of ((a(n)) and the right column the conventional notation. Multiply x*y (disregarding signs) using the bitwise XNOR operation, where x and y are any floretions of the same order. The XNOR operation returns a 1 if the number of 1's in its inputs is even, and a 0 if the number of 1's is odd. This operation is used to calculate the base vector of the result.
**** 1st-order floretions (= quaternions) ****
| binary | decimal | floretion
1 | 001 | 1 | i
2 | 010 | 2 | j
4 | 100 | 4 | k
7 | 111 | 7 | e (unit)
**** 2nd-order floretions ****
1_1 | 001_001 | 9 | ii
1_2 | 001_010 | 10 | ij
1_4 | 001_100 | 12 | ik
1_7 | 001_111 | 15 | ie
2_1 | 010_001 | 17 | ji
2_2 | 010_010 | 18 | jj
2_4 | 010_100 | 20 | jk
2_7 | 010_111 | 23 | je
4_1 | 100_001 | 33 | ki
4_2 | 100_010 | 34 | kj
4_4 | 100_100 | 36 | kk
4_7 | 100_111 | 39 | ke
7_1 | 111_001 | 57 | ei
7_2 | 111_010 | 58 | ej
7_4 | 111_100 | 60 | ek
7_7 | 111_111 | 63 | ee
**** 3rd-order floretions ****
1_1_1
1_1_2
...
Note that for a floretion of order n, two digits from any one of its "binary triplets" abc determine the other since XOR(a,b,c) = 1.
When working with a floretion algebra over the reals, i.e., elements of the form x = q_1*f_1 + ... q_m*f_m where q_1,...,q_m are real numbers and f_1,...,f_m are any floretions of the same order, then x may also be referred to as a "floretion". In this case f_1,...,f_m (i.e., terms of this sequence) may be referred to as "floretion base vectors" to avoid confusion.
Taking signs into account:
Given two binary representations (ab) and (cd) for quaternion elements, define multiplication as:
Compute (XNOR(a,c))(XNOR(b,d)) to get the base vector of the result.
Compute AND(b,c), AND(XNOR(a,b),d), and AND(a,XNOR(c,d)). These are all bitwise AND operations.
The sign is negative if and only if the total number of 1's in the results is even.
For example, with k*j = (10)*(01) = -i, compute:
The base vector as (XNOR(1,0) XNOR(0,1)) = (0)(0) = i.
The signs as AND(0,1), AND(XNOR(1,0),1), AND(1, XNOR(0,1)) = 0, 0, 0. There are zero 1's in total, which is an even number, so the result is negative.
An example of image processing: take for example a quaternion x = .2i + .5j + .3k + e. Assume we have a square monitor (aspect ratio). Furthermore, assume the screen is divided into 4 squares- one for i (bottom left), one for j (top left), one for k (top right) one for e (bottom right) and that the coefficient is the amount the pixels are lit up on the screen (1 being full brightness, 0 being off- this could be modified later to accomodate negative numbers). Now imagine we have square monitor of resolution 2^n x 2^n. Then we can represent any black and white image with that resolution with an n-th order floretion. This means we can multiply images together, with some parallels to Fourier analysis.
Multiplying an image by an idempotent floretion would allow one to repeatedly apply a specific transformation (e.g., a rotation, scaling, or some other operation) to an image, and then undo all of those transformations by continuing to apply the same operation a certain number of times. It could be used in applications such as data encryption, where an image could be "scrambled" using a specific floretion and then "unscrambled" by continuing to apply the same floretion.
A compact definition of multiplication is x*y = (ab)(cd) = (-1)^{m+1} (aqc)(bqd) where m = b&c + (aqb)&d + a&(cqd) and "q", "&" are the bitwise XNOR and AND operators respectively. - Creighton Dement, Jul 09 2023

Crossrefs

Programs

  • Mathematica
    A308496Q[n_]:=ContainsOnly[IntegerDigits[n,8],{1,2,4,7}];
    Select[Range[1000],A308496Q] (* Paolo Xausa, Dec 31 2023 *)
  • PARI
    is(n)=!#setminus(Set(digits(n,8)),[1,2,4,7]);
    a(n) =
    {
      local(total_count, index);
      until(total_count == n+1, if(is(index)==1, total_count++); index++);
      index-1;
    }
    
  • PARI
    a(n,b=8,d=[1,2,4,7]) = { for (w=1, oo, if (n>#d^w, n-=#d^w, return (fromdigits(apply(x -> d[1+x], digits(#d^w+n-1, #d))[2..-1],b)))) } \\ Rémy Sigrist, Jun 01 2019

A165660 Denominators of A007504 divided by A033955, starting from the second term of A033955.

Original entry on oeis.org

1, 3, 2, 8, 13, 18, 27, 29, 23, 56, 7, 74, 44, 98, 67, 49, 171, 200, 217, 28, 137, 309, 17, 116, 209, 448, 471, 174, 571, 629, 137, 739, 111, 793, 853, 318, 997, 1002, 560, 164, 610, 446, 1419, 1466, 385, 1615, 1573, 1633, 1707, 1825, 946, 662, 2221, 781, 1198
Offset: 1

Author

Creighton Dement, Sep 24 2009

Keywords

Comments

Conjecture: with the exception of the second term, 2 <= A165659(n)/a(n) < 3.

Programs

  • PARI
    a1(n)=sum(i=1, n, prime(i)); b1(n)=sum(i=1, n, prime(n+1)%prime(i)); a(n)=if(n<0, 0, denominator(a1(n)/b1(n))); for(n=1, 50, print1(a(n) ", "))

Extensions

Terms corrected by Creighton Dement, Oct 03 2009
Removed a conjecture - R. J. Mathar, Oct 09 2009
Typo in definition corrected by Creighton Dement, Oct 09 2009

A165657 Numerators of A002110 divided by A102647, starting from the second term of both.

Original entry on oeis.org

2, 3, 15, 105, 385, 5005, 17017, 323323, 1062347, 30808063, 434113615, 35336848261, 1448810778701, 33545541876077, 266186053068611, 5426100312552455, 9156001667401012567, 42962777054727828199
Offset: 1

Author

Creighton Dement, Sep 24 2009

Keywords

Crossrefs

Programs

  • PARI
    a1(n)=prod(i=1, n, prime(i)); b1(n)=prod(i=1, n, prime(n+1)%prime(i));
    a(n)=if(n<0, 0, numerator(a1(n)/b1(n))); for(n=1, 20, print1(a(n) ", "))

A165658 Denominators of A002110 divided by A102647, starting from the second term of both.

Original entry on oeis.org

1, 1, 1, 4, 6, 48, 64, 96, 576, 1728, 13824, 165888, 1036800, 9953280, 119439360, 297271296, 134369280000, 222953472000, 75246796800, 32105299968000, 229323571200, 568865783808000000, 125150472437760000, 6129819058176000
Offset: 1

Author

Creighton Dement, Sep 24 2009

Keywords

Crossrefs

Programs

  • PARI
    a1(n)=prod(i=1, n, prime(i));
    b1(n)=prod(i=1, n, prime(n+1)%prime(i));
    a(n)=if(n<0, 0, denominator(a1(n)/b1(n)));
    for(n=1, 25, print1(a(n) ", "))

A165659 Numerators of A007504 divided by A033955, starting from the second term of A033955.

Original entry on oeis.org

2, 5, 5, 17, 28, 41, 58, 77, 50, 129, 16, 197, 119, 281, 164, 127, 440, 501, 568, 71, 356, 791, 46, 321, 530, 1161, 1264, 457, 1480, 1593, 344, 1851, 284, 2127, 2276, 809, 2584, 2747, 1457, 441, 1633, 1149, 3638, 3831, 1007, 4227, 4438
Offset: 1

Author

Creighton Dement, Sep 24 2009

Keywords

Comments

Conjecture: with the exception of the second term, 2 <= a(n)/A165660(n) < 3.

Programs

  • PARI
    a1(n)=sum(i=1, n, prime(i));
    b1(n)=sum(i=1, n, prime(n+1)%prime(i));
    a(n)=if(n<0, 0, numerator(a1(n)/b1(n)));
    for(n=1, 50, print1(a(n) ", "))

Extensions

Typo in definition corrected by Creighton Dement, Oct 09 2009

A159582 Expansion of (1+6*x+x^2-2*x^3)/((x^2+2*x-1)*(x^2-2*x-1)), bisection is NSW numbers.

Original entry on oeis.org

1, 6, 7, 34, 41, 198, 239, 1154, 1393, 6726, 8119, 39202, 47321, 228486, 275807, 1331714, 1607521, 7761798, 9369319, 45239074, 54608393, 263672646, 318281039, 1536796802, 1855077841, 8957108166, 10812186007, 52205852194, 63018038201, 304278004998
Offset: 0

Author

Creighton Dement, Apr 16 2009

Keywords

Comments

Define c = [0, 7, 0, 41, 0, 239, 0, 1393, 0, 8119, 0, 47321, ...] where (c(2n+1)) = A002315(n+1) (NSW numbers). Then (a(n)) has the property c(2n) - a(2n) = -a(2n) = -A002315(n) and c(2n+1) - a(2n+1) = A002315(n) (NSW numbers).

Crossrefs

Cf. A002315.

Programs

  • PARI
    Vec((1+6*x+x^2-2*x^3) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Jun 29 2017

Formula

a(n) = 3*A078057(n)/2 - (-1)^n*A078057(n)/2. - R. J. Mathar, Nov 10 2009
From Colin Barker, Jun 29 2017: (Start)
a(n) = 6*a(n-2) - a(n-4) for n>3.
a(n) = ((-(-2+sqrt(2))*(-1+sqrt(2))^n - (-1-sqrt(2))^n*(2+sqrt(2)) - 3*(-(1-sqrt(2))^n*(-2+sqrt(2)) - (1+sqrt(2))^n*(2+sqrt(2))))) / (4*sqrt(2)).
(End)

A159288 Expansion of (1 + x + x^2)/(1 - x^2 - 2*x^3).

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 15, 24, 35, 54, 83, 124, 191, 290, 439, 672, 1019, 1550, 2363, 3588, 5463, 8314, 12639, 19240, 29267, 44518, 67747, 103052, 156783, 238546, 362887, 552112, 839979, 1277886, 1944203, 2957844, 4499975, 6846250, 10415663
Offset: 0

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj')
Starting with offset 1 the sequence appears to be the INVERT transform of (1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, ...). - Gary W. Adamson, Aug 27 2016

Crossrefs

Programs

  • Magma
    I:=[1, 1, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-x^2-2x^3),{x,0,50}],x]  (* Harvey P. Dale, Mar 09 2011 *)
    LinearRecurrence[{0, 1, 2}, {1, 1, 2}, 50] (* G. C. Greubel, Jun 27 2018 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 27 2016
    
  • PARI
    Vec((1 + x + x^2) / (1 - x^2 - 2*x^3) + O(x^40)) \\ Colin Barker, Apr 29 2019
    

Formula

a(n) = A159287(n) + A159287(n+1) + A159287(n+2). - R. J. Mathar, Apr 10 2009
a(n) = a(n-2) + 2*a(n-3) for n>2. - Colin Barker, Apr 29 2019
a(n)= A052947(n) + A052947(n-1) +A052947(n-2). - R. J. Mathar, Mar 23 2023

A159285 Expansion of (1+3*x)/(1-x^2-2*x^3).

Original entry on oeis.org

1, 3, 1, 5, 7, 7, 17, 21, 31, 55, 73, 117, 183, 263, 417, 629, 943, 1463, 2201, 3349, 5127, 7751, 11825, 18005, 27327, 41655, 63337, 96309, 146647, 222983, 339265, 516277, 785231, 1194807, 1817785, 2765269, 4207399, 6400839, 9737937, 14815637
Offset: 0

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj')

Crossrefs

Programs

  • Magma
    I:=[1,3,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    LinearRecurrence[{0, 1, 2}, {1, 3, 1}, 50] (* G. C. Greubel, Jun 27 2018 *)
    CoefficientList[Series[(1+3x)/(1-x^2-2x^3),{x,0,40}],x] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;3;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    

Formula

a(n) = A052947(n) + 3*A052947(n-1). - R. J. Mathar, Mar 23 2023

A159286 Expansion of (x-1)^2/(1-x^2-2*x^3).

Original entry on oeis.org

1, -2, 2, 0, -2, 4, -2, 0, 6, -4, 6, 8, -2, 20, 14, 16, 54, 44, 86, 152, 174, 324, 478, 672, 1126, 1628, 2470, 3880, 5726, 8820, 13486, 20272, 31126, 47244, 71670, 109496, 166158, 252836, 385150, 585152
Offset: 0

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj').

Crossrefs

Programs

  • Magma
    I:=[1, -2, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    CoefficientList[Series[(x-1)^2/(1-x^2-2*x^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,1,2},{1,-2,2},40]  (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;-2;2])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    

Formula

a(n) = A159288(n) - 3*A159287(n+1). - R. J. Mathar, Apr 10 2009
a(1)=1, a(2)=-2, a(3)=2, a(n) = 1*a(n-2) + 2*a(n-3) for n >= 3. - Harvey P. Dale, Apr 24 2011
a(n) = A078026(n)-A078026(n-1). - R. J. Mathar, Mar 23 2023

A159290 A generalized Jacobsthal sequence.

Original entry on oeis.org

3, 5, 13, 25, 53, 105, 213, 425, 853, 1705, 3413, 6825, 13653, 27305, 54613, 109225, 218453, 436905, 873813, 1747625, 3495253, 6990505, 13981013, 27962025, 55924053, 111848105, 223696213, 447392425, 894784853, 1789569705, 3579139413
Offset: 0

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

Sequence generated by the floretion: X*Y with X = 0.5('i + 'j + 'k + 'ee') and Y = 0.5(i' + j' + k' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + 'ee')

Crossrefs

Programs

  • Magma
    [-1 + (2*(-1)^n + 5*2^(n+1))/3: n in [0..50]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    LinearRecurrence[{2, 1, -2}, {3, 5, 13}, 50] (* or *) Table[-1 + (2*(-1)^n + 5*2^(n+1))/3, {n,0,30}] (* G. C. Greubel, Jun 27 2018 *)
  • PARI
    x='x+O('x^50); Vec((3-x)/(-x^2+1-2*x+2*x^3)) \\ G. C. Greubel, Jun 27 2018
    

Formula

a(n) = -1 + (2*(-1)^n + 5*2^(n+1))/3.
G.f.: (3-x)/((1-x)*(1+x)*(1-2*x)).
a(n) = 3*A000975(n+1) - A000975(n). - R. J. Mathar, Sep 11 2019
a(n)+a(n+1) = A051633(n+1). - R. J. Mathar, Mar 23 2023