cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: K.V.Iyer

K.V.Iyer's wiki page.

K.V.Iyer has authored 5 sequences.

A191994 (Sum of first n Fibonacci numbers) times (product of first n Fibonacci numbers).

Original entry on oeis.org

1, 2, 8, 42, 360, 4800, 102960, 3538080, 196035840, 17520703200, 2529842515200, 590412901478400, 222813349683724800, 136001024583142118400, 134285149587387262464000, 214504624277084224347264000, 554361997358383529330695680000
Offset: 1

Keywords

Comments

Let F(1), F(2), F(3), ... be the Fibonacci numbers 1, 1, 2, .... For k=1, we define the tree T(1) the path on two vertices with one identified as the root r. We assign the edge-weight F(1). T(2) is obtained from T(1) by attaching F(2) vertex to the pendents in T(1) except r. In T(2), r is retained as in T(1) and the new edge-weight is assigned as F(2). For k>1, T(k) is obtained from T(k-1) by attaching F(k) vertices to pendents in T(k-1) except r. In T(k), r is retained as in T(k-1) and all the new edge-weights are assigned F(k). With D(1)=1, for k>1 let D(k)=Sum of all distances d(r,x) taken across all vertices x in T(k). By induction it follows that for k>1, D(k)-D(k-1) is this sequence.
Retaining the notation of D(k) above, it follows, for k>1, that if D(k)=a(1)F(1)+ - - - +a(k)F(k) then D(k+1)=b(1)F(1)+ - - - +b(k)F(k)+b(k+1)F(k+1) where b(k+1) is the number of leaf nodes in T(k+1).

Crossrefs

Cf. A000071 (sum of Fibonacci numbers), A003266 (product of Fibonacci numbers).
Cf. A062073 (Fibonacci factorial constant).

Programs

Formula

a(n) ~ C*sqrt(phi^(n^2 + 3*n + 4)/5^(n+1)) where C = A062073 and phi = (1+sqrt(5))/2.
a(n) = (F(n+2)-1) * Product_{k=1..n} F(k). - Franklin T. Adams-Watters, Jun 23 2011

A179023 a(n) = n(F(n+2) - 1) where F(n) is defined by A000045.

Original entry on oeis.org

0, 1, 4, 12, 28, 60, 120, 231, 432, 792, 1430, 2552, 4512, 7917, 13804, 23940, 41328, 71060, 121752, 207955, 354200, 601776, 1020074, 1725552, 2913408, 4910425, 8263060, 13884156, 23297092, 39041772, 65349240, 109261887, 182492352
Offset: 0

Author

K.V.Iyer, Jun 25 2010

Keywords

Comments

Let the 'Fibonacci weighted stars' T(i)'s be defined as: T(1) is an edge with one vertex as a distinguished vertex; the weight on the edge is taken to be F(1); for n>1, T(n) is formed by taking a copy of T(n-1) and attaching an edge to its distinguished vertex; the weight on the new edge is taken to be F(n). The sum of the weighted distances over all pairs of vertices in T(n) is this sequence.

Programs

  • Mathematica
    f[n_] := n(Fibonacci[n + 2] - 1); Array[f, 33, 0] (* Robert G. Wilson v, Jun 27 2010 *)

Formula

a(0)=0, a(1)=1 and for n>1, a(n) = a(n-1) + F(n+1) +nF(n) -1.
a(n)= +4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6). = -n + A023607(n+1) - A000045(n+2). G.f.: -x*(-1+2*x^3) / ( (x-1)^2*(x^2+x-1)^2 ). - R. J. Mathar, Sep 15 2010

Extensions

More terms from Robert G. Wilson v, Jun 27 2010

A165910 Wiener indices of Fibonacci trees of order k.

Original entry on oeis.org

1, 4, 18, 62, 210, 666, 2063, 6226, 18484, 54100, 156620, 449268, 1278981, 3617544, 10175590, 28485218, 79406350, 220536910, 610487875, 1684974790, 4638298536, 12737460744, 34902844728, 95449821672, 260554112425, 710056257196
Offset: 1

Author

K.V.Iyer, K. R. Udaya Kumar Reddy, Sep 30 2009

Keywords

Comments

The Fibonacci trees T(f(k)) of order k is defined as follows: 1. T(f(-1)) and T(f(0)) each consist of a single node. 2. For k >= 1, T(f(k)) is built from copies of T(f(k-1)) and T(f(k-2)) by connecting (by an edge) T(f(k-2)) as the rightmost child of the root of T(f(k-1)).

Examples

			W(T(1)) = 1 because T(1) is a single edge. W(T(2)) = 4 because T(2) is a path on three vertices.
		

References

  • K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.

Formula

The Wiener index W(T(f(k))) of the Fibonacci tree T(f(k)) satisfies the following recurrence: W(T(f(k))) = W(T(f(k-1))) + W(T(f(k-2))) + F(k+1) D(T(f), (k-2)) + F(k) D(T(f), (k-1)) + F(k+1) F(k), where D(T(f), k) = (1/5) (k F(k+2) + (k+2) F(k)) and F(k) is the k-th Fibonacci number.
D(T(f),k) = A001629(k+1). Conjecture: G.f. x*(1-x+x^2-2*x^3)/( (1-x^2-x) * (1+x)^2 * (x^2-3*x+1)^2 ). [From R. J. Mathar, Apr 19 2010]

A158681 Wiener indexes of the complete binary trees with n levels, root being at level 0.

Original entry on oeis.org

4, 48, 368, 2304, 12864, 66816, 330496, 1579008, 7353344, 33583104, 151056384, 671219712, 2953068544, 12885491712, 55835820032, 240520790016, 1030797656064, 4398058045440, 18691721789440, 79164887531520, 334251639701504, 1407375101657088, 5910974963908608
Offset: 1

Author

K.V.Iyer, Mar 24 2009

Keywords

Examples

			For n=1, the complete binary tree with level 1 is P_{3} whose Wiener index is 4.
		

References

  • R.Balakrishnan, K.Viswanathan Iyer, K.T.Raghavendra, "Wiener index of two special trees", MATCH Commun. Math. Comput. Chem., 57(2), 2007, 385-392.

Programs

  • Mathematica
    LinearRecurrence[{12,-52,96,-64},{4,48,368,2304},40] (* Harvey P. Dale, Nov 05 2015 *)

Formula

a(n) = (n+4)2^(n+1) + (n-2)2^(2n+2), n>0.
G.f.: 4*x / ( (4*x-1)^2*(2*x-1)^2 ). [From R. J. Mathar, Sep 15 2010]

A136328 a(n) = Wiener index of the odd graph O_n.

Original entry on oeis.org

0, 3, 75, 1435, 25515, 436821, 7339332, 121782375, 2005392675, 32835436777, 535550923908, 8707954925033, 141270179732500, 2287544190032700, 36988236910737360, 597341791692978975, 9637351741503033075, 155353556752487795625, 2502545930175392062500
Offset: 1

Author

K.V.Iyer, Mar 27 2008

Keywords

Comments

The odd graph O_n (n>=2) is a graph whose vertices represent the (n-1)-subsets of {1,2,...,2n-1} and two vertices are connected if and only if they correspond to disjoint subsets. It is a distance regular graph. [Emeric Deutsch, Aug 20 2013]

Examples

			a(2)=3 is the Wiener index of O_2 which is C_3.
a(3)=75 is the Wiener index of O_3 which is the Petersen graph.
		

References

  • Kailasam Viswanathan Iyer, Some computational and graph theoretical aspects of Wiener index, Ph.D. Dissertation, Dept. of Comp. Sci. & Engg., National Institute of Technology, Trichy, India, 2007.

Crossrefs

Programs

  • Maple
    A136328d := proc(k) add( (2*j+1)*binomial(k-1,j)^2/(1+j),j=0..(k/2-1) ); %+2*add( (k-1-j)*binomial(k-1,j)^2/(1+j),j=floor(k/2)..(k-2) ); k*% ; end proc:
    A136328 := proc(n) binomial(2*n-1,n-1)*A136328d(n)/2 ; end proc: seq(A136328(n),n=1..20) ;
    # R. J. Mathar, Sep 15 2010
    B := proc (n) options operator, arrow: [seq(n-floor((1/2)*m), m = 1 .. n-1)] end proc: C := proc (n) options operator, arrow: [seq(ceil((1/2)*m), m = 1 .. n-1)] end proc: H := proc (n) options operator, arrow: (1/2)*binomial(2*n-1, n-1)*(sum((product(B(n)[r]/C(n)[r], r = 1 .. j))*t^j, j = 1 .. n-1)) end proc: Wi := proc (n) options operator, arrow: subs(t = 1, diff(H(n), t)) end proc: seq(Wi(n), n = 2 .. 20);
    # Emeric Deutsch, Aug 20 2013
  • Mathematica
    Table[Binomial[2 n - 1, n - 1]/2 (Sum[((2 j + 1) n)/(j + 1) Binomial[n - 1, j]^2, {j, 0, Floor[n/2] - 1}] + Sum[(2 (n - 1 - j) n)/(j + 1) Binomial[n - 1, j]^2, {j, Floor[n/2], n - 2}]), {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
    Table[Sum[k Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]] Binomial[2 n - 1, n - 1]/2, {k, n - 1}], {n, 20}] (* Eric W. Weisstein, Mar 27 2018 *)
  • PARI
    a(n) = sum(k=1, n-1, k*binomial(n, ceil(k/2))*binomial(n-1, k\2))*binomial(2*n-1,n-1)/2 \\ Andrew Howroyd, Mar 26 2018

Formula

a(n) = binomial(2*n - 1, n - 1)/2*(sum(((2*j + 1)*n)/(j + 1)*binomial(n - 1, j)^2, {j, 0, floor(n/2) - 1}) + sum((2*(n - 1 - j)*n)/(j + 1)*binomial(n - 1, j)^2, {j, floor(n/2), n - 2})). - Eric W. Weisstein, Sep 08 2017
A formula is "hidden" in the 2nd Maple program. B(n) and C(n) are the intersection arrays of O_n, H(n) is the Hosoya-Wiener polynomial of O_n, and Wi(n) is the Wiener index of O_n. - Emeric Deutsch, Aug 20 2013
a(n) = A301566(n)*binomial(2*n-1,n-1)/2. - Eric W. Weisstein, Mar 26 2018

Extensions

Extended by R. J. Mathar, Sep 15 2010
Terms a(18) and beyond from Andrew Howroyd, Mar 26 2018