cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228308 Triangle read by rows: T(n,k) (n>=2, 1<=k<=n-1) is the number of unordered pairs of vertices at distances k in the odd graph O_n.

Original entry on oeis.org

3, 15, 30, 70, 210, 315, 315, 1260, 2520, 3780, 1386, 6930, 17325, 34650, 46200, 6006, 36036, 108108, 270270, 450450, 600600, 25740, 180180, 630630, 1891890, 3783780, 6306300, 7882875, 109395, 875160, 3500640, 12252240, 28588560, 57177120
Offset: 2

Views

Author

Emeric Deutsch, Aug 20 2013

Keywords

Comments

Row n contains n-1 entries (n>=2).
The odd graph O_n is a graph whose vertices represent the (n-1)-subsets of {1,2,...,2n-1} and two vertices are connected if and only if they correspond to disjoint subsets. It is a distance regular graph.
The entries in row n are the coefficients of the Hosoya-Wiener polynomial of the odd graph O_n (n>=2).

Examples

			Row 2 has only one entry equal to 3; indeed, O_2 is the complete graph K_3,  having 3 distances equal to 1.
		

References

  • N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 161.
  • R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer, The Wiener index of odd graphs, J. Indian. Inst. Sci., vol. 86, 2006, 527-531.

Crossrefs

Programs

  • Maple
    B := proc (n) options operator, arrow: [seq(n-floor((1/2)*m), m = 1 .. n-1)] end proc: C := proc (n) options operator, arrow: [seq(ceil((1/2)*m), m = 1 .. n-1)] end proc: H := proc (n) options operator, arrow: (1/2)*binomial(2*n-1, n-1)*(sum((product(B(n)[r]/C(n)[r], r = 1 .. j))*t^j, j = 1 .. n-1)) end proc: for n from 2 to 10 do seq(coeff(H(n), t, k), k = 1 .. n-1) end do; # yields sequence in triangular form

Formula

A formula is "hidden" in the Maple program. B(n) and C(n) are the intersection arrays of O_n while H(n) is the Hosoya-Wiener polynomial of O_n.

A228309 The hyper-Wiener index of the odd graph O_n (n>=2).

Original entry on oeis.org

3, 105, 2590, 57015, 1165626, 22834812, 433178460, 8036703675, 146451924190, 2632740298188, 46790614294788, 824017920352900, 14397367664647800, 249906966022292400, 4312825574857068600, 74063143648813911075
Offset: 2

Views

Author

Emeric Deutsch, Aug 20 2013

Keywords

Comments

The odd graph O_n is a graph whose vertices represent the (n-1)-subsets of {1,2,...,2n-1} and two vertices are connected if and only if they correspond to disjoint subsets. It is a distance regular graph.

References

  • N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 161.
  • R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer, The Wiener index of odd graphs, J. Indian. Inst. Sci., vol. 86, 2006, 527-531.

Crossrefs

Programs

  • Maple
    B := proc (n) options operator, arrow: [seq(n-floor((1/2)*m), m = 1 .. n-1)] end proc: C := proc (n) options operator, arrow: [seq(ceil((1/2)*m), m = 1 .. n-1)] end proc: H := proc (n) options operator, arrow: (1/2)*binomial(2*n-1, n-1)*(sum((product(B(n)[r]/C(n)[r], r = 1 .. j))*t^j, j = 1 .. n-1)) end proc: HWi := proc (n) options operator, arrow: subs(t = 1, diff(H(n), t)+(1/2)*(diff(H(n), `$`(t, 2)))) end proc: seq(HWi(n), n = 2 .. 20);

Formula

A formula is "hidden" in the Maple program. B(n) and C(n) are the intersection arrays of O_n, H(n) is the Hosoya-Wiener polynomial of O_n, and HWi(n) is the hyper-Wiener index of O_n.

A301566 a(n) = Sum_{k=1..n-1} k*A088459(n, k).

Original entry on oeis.org

0, 2, 15, 82, 405, 1891, 8554, 37850, 164985, 710893, 3036726, 12880847, 54331550, 228089538, 953811972, 3975120810, 16519242465, 68474376025, 283211458750, 1169062910873, 4817380232522, 19819870885230, 81429323786460, 334120527783367, 1369374666890230
Offset: 1

Views

Author

Eric W. Weisstein, Mar 23 2018

Keywords

Comments

a(n)/binomial(2*n-1,n-1) gives the mean distance of the n-odd graph.
Sum can be given in closed form involving four terms each consisting of a product of binomials and 3F2's.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {k, n - 1}], {n, 20}]
  • PARI
    T(n, k) = binomial(n, ceil(k/2))*binomial(n-1, k\2);
    a(n) = sum(k=1, n-1, k*T(n,k)); \\ Altug Alkan, Mar 23 2018

Formula

a(n) = 2*A136328(n)/binomial(2*n-1,n-1). - Andrew Howroyd, Mar 24 2018

A228310 The hyper-Wiener index of the hypercube graph Q(n) (n>=2).

Original entry on oeis.org

10, 72, 448, 2560, 13824, 71680, 360448, 1769472, 8519680, 40370176, 188743680, 872415232, 3992977408, 18119393280, 81604378624, 365072220160, 1623497637888, 7181185318912, 31610959298560, 138538465099776, 604731395276800, 2630031813640192
Offset: 2

Views

Author

Emeric Deutsch, Aug 20 2013

Keywords

Comments

The hypercube graph Q(n) has as vertices the binary words of length n and an edge joins two vertices whenever the corresponding binary words differ in just one place.
Q(n) is distance-transitive and therefore also distance-regular. The intersection array is {n,n-1,n-2,...,1; 1,2,3,...,n-1,n}.

References

  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161).

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25);
  • Mathematica
    LinearRecurrence[{12,-48,64},{10,72,448},30] (* Harvey P. Dale, Dec 13 2024 *)

Formula

a(n) = 4^{n-2}*n*(3+n).
G.f.: 2*x^2*(5 - 24*x + 32*x^2)/(1-4*x)^3.
The Hosoya-Wiener polynomial of Q(n) is 2^{n-1}*((1+t)^n - 1).
Showing 1-4 of 4 results.