A338293 Number of matchings in the complete binary tree of n rows.
1, 1, 3, 15, 495, 467775, 448046589375, 396822986774382287109375, 316789536051348354157896789538095888519287109375
Offset: 0
Keywords
Examples
n=0 rows is the empty tree and n=1 row is a single vertex. Both have only the empty matching so a(0) = a(1) = 1. n=2 rows is a path-3 and has 3 matchings: first two vertices, last two, or the empty matching, so a(2) = 3. Jacobsthal products formula: a(4) = J(5) * J(4) * J(3)^2 * J(2)^4 * J(1)^8 = 11 * 5 * 3^2 * 1^4 * 1^8 = 495.
Links
- Kevin Ryde, Table of n, a(n) for n = 0..12
- Kevin Ryde, vpar examples/complete-binary-matchings.gp calculations and code in PARI/GP.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
Crossrefs
Programs
-
PARI
a(n) = my(x=1,y=1); for(i=2,n, [x,y] = [x^2 + 2*x*y^2, x]); x;
Formula
a(n) = a(n-1)^2 + 2*a(n-1)*a(n-2)^2 starting a(0)=1 and a(1)=1.
a(n) = J(n+1) * J(n) * J(n-1)^2 * J(n-2)^4 * ... * J(1)^(2^(n-1)) where J(n) = (2^n - (-1)^n)/3 = A001045(n) is the Jacobsthal numbers.
A228607(n) = a(n+1)^2*(a(n+1)+3*a(n)^2). - R. J. Mathar, Jul 22 2022
Comments