cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A007472 Shifts 2 places left when binomial transform is applied twice with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 9, 29, 105, 431, 1969, 9785, 52145, 296155, 1787385, 11428949, 77124569, 546987143, 4062341601, 31502219889, 254500383457, 2137863653811, 18639586581097, 168387382189709, 1573599537048265, 15189509662516063, 151243491212611217, 1551565158004180137
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A383235.

Programs

  • Maple
    bintr:= proc(p) local b;
              b:= proc(n) option remember; add(p(k)*binomial(n,k), k=0..n) end
            end:
    b:= (bintr@@2)(a):
    a:= n-> `if`(n<2, 1, b(n-2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 18 2012
  • Mathematica
    bintr[p_] := Module[{b}, b[n_] := b[n] = Sum [p[k]*Binomial[n, k], {k, 0, n}]; b]; b = a // bintr // bintr; a[n_] := If[n<2, 1, b[n-2]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
    (* another program *)
    B[x_] := (BesselK[0, 1] + BesselK[1, 1])*BesselI[0, Exp[x]] + (BesselI[1, 1] - BesselI[0, 1])*BesselK[0, Exp[x]];
    a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]],n] n!
    Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x). - Ilya Gutkovskiy, Jan 30 2022
E.g.f.: (BesselK(0, 1) + BesselK(1, 1)) * BesselI(0, exp(x)) + (BesselI(1, 1) - BesselI(0, 1)) * BesselK(0, exp(x)). - Ven Popov, Apr 25 2025
Showing 1-1 of 1 results.