A383235 Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 1, 0, 0, 8, 12, 8, 1, 0, 0, 16, 32, 44, 12, 1, 0, 0, 32, 80, 208, 92, 18, 1, 0, 0, 64, 192, 912, 576, 200, 24, 1, 0, 0, 128, 448, 3840, 3216, 1776, 344, 32, 1, 0, 0, 256, 1024, 15808, 16704, 13872, 3840, 600, 40, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 0 1 2: 0 0 1 3: 0 0 2 1 4: 0 0 4 4 1 5: 0 0 8 12 8 1 6: 0 0 16 32 44 12 1 7: 0 0 32 80 208 92 18 1 8: 0 0 64 192 912 576 200 24 1 9: 0 0 128 448 3840 3216 1776 344 32 1 10: 0 0 256 1024 15808 16704 13872 3840 600 40 1 11: 0 0 512 2304 64256 82624 99936 36912 8640 920 50 1 12: 0 0 1024 5120 259328 394752 682240 321408 106032 16000 1420 60 1 ------------------------------------------------------------------------ Recurrence: S(5,3) = 2*Floor(3/2)*S(4,3) + S(4,2) = 2*4 + 4 = 12. S(5,4) = 2*Floor(4/2)*S(4,4) + S(4,3) = 4*1 + 4 = 8.
Links
Crossrefs
Programs
-
Mathematica
Z[0,0,m_]=1; Z[0,k_,m_]:=0/;k>0; Z[n_,0,m_]:=0/;n>0; Z[n_,k_,m_]:=Z[n,k,m]=m*Floor[k/m]*Z[n-1,k,m]+Z[n-1,k-1,m]; Flatten[Table[Z[n,k,2],{n,0,12},{k,0,n}]]
Formula
T(n, k) = 2*Floor(k/2)*T(n-1, k) + T(n-1, k-1), n > 0; T(0, k) = 0, k > 0; T(0, 0) = 1.
E.g.f.: A[x_, t_] := x*(BesselK[0,x] + BesselK[1,x])*BesselI[0,x*Exp[t]] + x*(BesselI[1,x] - BesselI[0,x])*BesselK[0, x Exp[t]] where T(n,k) are the coefficients of x^k for t^n. The much simpler formula BesselI[0,x*Exp[t]] produces the same coefficients but with carrier alternating BesselI[0,x] and BesselI[1,x] functions at even and odd coefficients.
Comments