A351049
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).
Original entry on oeis.org
1, 1, 1, 4, 16, 67, 307, 1585, 9235, 59548, 415564, 3094807, 24452785, 204611653, 1810429597, 16892405896, 165592138372, 1698918207403, 18184602679435, 202577753111653, 2344503929765023, 28146188358379120, 349996346545057288, 4501360727764475503
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]
A351050
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).
Original entry on oeis.org
1, 1, 1, 5, 25, 129, 713, 4373, 30289, 235041, 1998001, 18226117, 176364969, 1803064033, 19463340729, 221691818005, 2658751147297, 33458500940993, 440140082161121, 6032572875160069, 85936355674437561, 1270176766188103105, 19453176663852208937
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351143
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 0, 1, 2, 5, 16, 61, 258, 1177, 5776, 30537, 173394, 1050045, 6732608, 45459493, 322141106, 2390075249, 18525967328, 149684238801, 1257802518754, 10969260208565, 99100423076912, 926030783479629, 8937741026924450, 88988433270106249, 912906193294355952
Offset: 0
-
bintr:= proc(p) local b;
b:= proc(n) option remember; add(p(k)*binomial(n, k), k=0..n) end
end:
b:= (bintr@@2)(a):
a:= n-> `if`(n<2, 1-n, b(n-2)):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 07 2025
-
nmax = 25; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 2^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
(* another program *)
B[x_] := BesselK[1, 1]*BesselI[0, Exp[x]] + BesselI[1, 1]*BesselK[0, Exp[x]];
a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]], n] n!
Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)
A351028
G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
0, 1, 0, 1, 4, 13, 44, 173, 792, 4009, 21608, 122761, 737340, 4696341, 31665076, 224846037, 1672266352, 12976252561, 104816144656, 880061135057, 7670326372532, 69286959112797, 647568753568636, 6251768635591613, 62255057942504968, 638658964709824185
Offset: 0
-
bintr:= proc(p) local b;
b:= proc(n) option remember; add(p(k)*binomial(n, k), k=0..n) end
end:
b:= (bintr@@2)(a):
a:= n-> `if`(n<2, n, b(n-2)):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 07 2025
-
nmax = 25; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 2^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}];
(* another pprogram *)
B[x_] := BesselK[0, 1]*BesselI[0, Exp[x]] - BesselI[0, 1]*BesselK[0, Exp[x]];
a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]], n] n!;
Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)
A350456
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).
Original entry on oeis.org
1, 1, 1, -1, 1, -3, 17, -85, 385, -1767, 8929, -50633, 312705, -2036267, 13794417, -97295069, 717808897, -5549714767, 44868094145, -377741383697, 3298933836033, -29813463964115, 278462029910993, -2685972391332837, 26733375327601281, -274247228584531767
Offset: 0
-
nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 2 x)]/(1 + 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-2)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
A351056
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 5*x)) / (1 - 5*x).
Original entry on oeis.org
1, 1, 1, 6, 36, 221, 1431, 10121, 80311, 718106, 7111976, 76201501, 868288401, 10438492181, 132166853861, 1763179150946, 24776241643056, 365971430085021, 5662954240306111, 91450179009971181, 1536249848608545451, 26782376261726525126, 483792982362049317676
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 5 x)]/(1 - 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 5^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351057
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 6*x)) / (1 - 6*x).
Original entry on oeis.org
1, 1, 1, 7, 49, 349, 2593, 20755, 184609, 1851289, 20735041, 253471039, 3310505425, 45630322741, 660993079393, 10065000586507, 161262522401089, 2717539655666353, 48053169836707969, 888408313419305719, 17108882037936283249, 342144175940842590349, 7089944927940141776545
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 6 x)]/(1 - 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 6^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351342
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 27, 83, 271, 971, 3865, 16879, 78985, 388385, 1987201, 10561385, 58443891, 337724057, 2040085491, 12862712499, 84357800063, 573182197539, 4021203303593, 29062345301487, 216129411635057, 1653180368063361, 13003920016983361, 105158133803473329
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 3, 1, Sum[Binomial[n - 3, k] 2^k a[n - k - 3], {k, 0, n - 3}]]; Table[a[n], {n, 0, 27}]
A351343
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 9, 27, 81, 245, 761, 2493, 8849, 34519, 147057, 670327, 3198561, 15732905, 79174929, 407127897, 2145061729, 11635963499, 65309080185, 380583443187, 2304629301041, 14475031232285, 93943897651017, 627220447621973, 4290783719133041, 29988917377046207
Offset: 0
-
nmax = 29; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 4, k] 2^k a[n - k - 4], {k, 0, n - 4}]]; Table[a[n], {n, 0, 29}]
A351344
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 9, 27, 81, 243, 731, 2223, 6939, 22727, 79971, 306929, 1282815, 5744361, 26984415, 130656409, 644739377, 3224303841, 16318576681, 83717193681, 436948772697, 2331807007139, 12791837178265, 72472130039123, 425239734375217, 2584950704996379
Offset: 0
-
nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 5, 1, Sum[Binomial[n - 5, k] 2^k a[n - k - 5], {k, 0, n - 5}]]; Table[a[n], {n, 0, 30}]
Showing 1-10 of 12 results.
Comments