A351050
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).
Original entry on oeis.org
1, 1, 1, 5, 25, 129, 713, 4373, 30289, 235041, 1998001, 18226117, 176364969, 1803064033, 19463340729, 221691818005, 2658751147297, 33458500940993, 440140082161121, 6032572875160069, 85936355674437561, 1270176766188103105, 19453176663852208937
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351144
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).
Original entry on oeis.org
1, 0, 1, 3, 10, 39, 181, 972, 5797, 37389, 258202, 1905681, 15016465, 125920872, 1117950913, 10452866439, 102485649754, 1050464300187, 11231883627301, 125055844922916, 1447371528438565, 17382103226123313, 216221862096537994, 2781342531957176085, 36942930754308211969
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
A351053
G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).
Original entry on oeis.org
0, 1, 0, 1, 6, 28, 126, 613, 3438, 22159, 157362, 1189126, 9436320, 78690781, 692478684, 6439539457, 63106488618, 648453907216, 6952719052134, 77521908188737, 897132401326458, 10764085132255807, 133774484448519294, 1720018195807299418, 22847325911461934352
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
A351056
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 5*x)) / (1 - 5*x).
Original entry on oeis.org
1, 1, 1, 6, 36, 221, 1431, 10121, 80311, 718106, 7111976, 76201501, 868288401, 10438492181, 132166853861, 1763179150946, 24776241643056, 365971430085021, 5662954240306111, 91450179009971181, 1536249848608545451, 26782376261726525126, 483792982362049317676
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 5 x)]/(1 - 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 5^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351057
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 6*x)) / (1 - 6*x).
Original entry on oeis.org
1, 1, 1, 7, 49, 349, 2593, 20755, 184609, 1851289, 20735041, 253471039, 3310505425, 45630322741, 660993079393, 10065000586507, 161262522401089, 2717539655666353, 48053169836707969, 888408313419305719, 17108882037936283249, 342144175940842590349, 7089944927940141776545
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 6 x)]/(1 - 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 6^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351184
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 3*x)) / (1 + 3*x).
Original entry on oeis.org
1, 1, 1, -2, 4, -11, 55, -359, 2359, -15230, 100840, -716555, 5580145, -47230091, 425472229, -4013326982, 39379161136, -402010392971, 4279164575167, -47533936734179, 550239127112107, -6618018093867506, 82447377648018700, -1061324336149876667, 14095604842846277617
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 3 x)]/(1 + 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-3)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
Showing 1-6 of 6 results.
Comments