A351342
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 27, 83, 271, 971, 3865, 16879, 78985, 388385, 1987201, 10561385, 58443891, 337724057, 2040085491, 12862712499, 84357800063, 573182197539, 4021203303593, 29062345301487, 216129411635057, 1653180368063361, 13003920016983361, 105158133803473329
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 3, 1, Sum[Binomial[n - 3, k] 2^k a[n - k - 3], {k, 0, n - 3}]]; Table[a[n], {n, 0, 27}]
A351343
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 9, 27, 81, 245, 761, 2493, 8849, 34519, 147057, 670327, 3198561, 15732905, 79174929, 407127897, 2145061729, 11635963499, 65309080185, 380583443187, 2304629301041, 14475031232285, 93943897651017, 627220447621973, 4290783719133041, 29988917377046207
Offset: 0
-
nmax = 29; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 4, k] 2^k a[n - k - 4], {k, 0, n - 4}]]; Table[a[n], {n, 0, 29}]
A351345
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 * A(x/(1 - 2*x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 9, 27, 81, 243, 729, 2189, 6601, 20141, 63009, 205989, 718905, 2720543, 11183601, 49321367, 228895201, 1097860903, 5371546897, 26598018425, 132755261681, 667027581401, 3376011676481, 17249045903945, 89270689572497, 470069622480667
Offset: 0
-
nmax = 31; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 6, 1, Sum[Binomial[n - 6, k] 2^k a[n - k - 6], {k, 0, n - 6}]]; Table[a[n], {n, 0, 31}]
Showing 1-3 of 3 results.
Comments