cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007472 Shifts 2 places left when binomial transform is applied twice with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 9, 29, 105, 431, 1969, 9785, 52145, 296155, 1787385, 11428949, 77124569, 546987143, 4062341601, 31502219889, 254500383457, 2137863653811, 18639586581097, 168387382189709, 1573599537048265, 15189509662516063, 151243491212611217, 1551565158004180137
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A383235.

Programs

  • Maple
    bintr:= proc(p) local b;
              b:= proc(n) option remember; add(p(k)*binomial(n,k), k=0..n) end
            end:
    b:= (bintr@@2)(a):
    a:= n-> `if`(n<2, 1, b(n-2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 18 2012
  • Mathematica
    bintr[p_] := Module[{b}, b[n_] := b[n] = Sum [p[k]*Binomial[n, k], {k, 0, n}]; b]; b = a // bintr // bintr; a[n_] := If[n<2, 1, b[n-2]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
    (* another program *)
    B[x_] := (BesselK[0, 1] + BesselK[1, 1])*BesselI[0, Exp[x]] + (BesselI[1, 1] - BesselI[0, 1])*BesselK[0, Exp[x]];
    a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]],n] n!
    Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x). - Ilya Gutkovskiy, Jan 30 2022
E.g.f.: (BesselK(0, 1) + BesselK(1, 1)) * BesselI(0, exp(x)) + (BesselI(1, 1) - BesselI(0, 1)) * BesselK(0, exp(x)). - Ven Popov, Apr 25 2025

A351053 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).

Original entry on oeis.org

0, 1, 0, 1, 6, 28, 126, 613, 3438, 22159, 157362, 1189126, 9436320, 78690781, 692478684, 6439539457, 63106488618, 648453907216, 6952719052134, 77521908188737, 897132401326458, 10764085132255807, 133774484448519294, 1720018195807299418, 22847325911461934352
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 3rd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 24; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).

A351128 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).

Original entry on oeis.org

0, 1, 0, 1, 8, 49, 280, 1649, 10800, 81505, 696400, 6472033, 63562872, 652984977, 7026210728, 79547049681, 949709767904, 11936248012993, 157219119485216, 2159448120457409, 30811324011852136, 455635009201780977, 6975424580445456056, 110478282815356437809
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 4th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).

A351132 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 5*x)) / (1 - 5*x).

Original entry on oeis.org

0, 1, 0, 1, 10, 76, 530, 3701, 27810, 237151, 2316350, 25135126, 292106400, 3559029501, 45211131460, 600619791201, 8384107777030, 123237338584576, 1904128564485610, 30789744821412401, 518479182191232950, 9057086806410632751, 163745788914416588050
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 5th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 5 x)]/(1 - 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 5^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 5^k * a(n-k-2).

A351161 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 6*x)) / (1 - 6*x).

Original entry on oeis.org

0, 1, 0, 1, 12, 109, 900, 7309, 62280, 590185, 6402360, 78347593, 1042633908, 14648616757, 214421295132, 3266839420021, 52041902492496, 870810496011793, 15326196662766384, 283049655668743249, 5460180803581446684, 109489002283248831037, 2273856664328893182324
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 6th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 6 x)]/(1 - 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 6^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 6^k * a(n-k-2).
Showing 1-5 of 5 results.