cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gregory Gerard Wojnar

Gregory Gerard Wojnar's wiki page.

Gregory Gerard Wojnar has authored 34 sequences. Here are the ten most recent ones:

A385081 Irregular triangle T(n,k) of refined derangement counts in the symmetric group S_(n+1), refined per cycle type.

Original entry on oeis.org

1, 2, 3, 6, 20, 24, 15, 90, 40, 120, 210, 504, 420, 720, 105, 1260, 1120, 3360, 2688, 1260, 5040, 2520, 9072, 15120, 25920, 2240, 20160, 18144, 40320, 945, 18900, 25200, 75600, 120960, 56700, 226800, 50400, 172800, 151200, 72576, 362880
Offset: 1

Author

Gregory Gerard Wojnar, Jun 16 2025

Keywords

Comments

The triangle consists of selected entries from A181897.
Each permutation in the symmetric group S_N has a cycle type specified by an integer partition of N. We encode a partition of N as an N-tuple of multiplicities of j=1..N; e.g., the partition 8 = 1+1+2+4 is encoded as (2,1,0,1,0,0,0,0), abbreviated (2,1,0,1). In general (m_j: j=1..N), and this partition corresponds to a cycle type (a)(b)(cd)(efgh) in S_8. Derangements have no fixed points, hence correspond to partitions with no addends of 1; i.e., m_1=0. A181897 counts all permutations via cycle type (not just derangements), with the partitions ordered reverse lexicographically in terms of their multiplicities N-tuples. E.g., partitions of 4 are ordered: (4), (2,1), (1,0,1), (0,0,0,1). In fact, the columns of A181897 (as a triangular array) are scaled columns of binomial coefficients binomial(p,q) with q fixed for each column, scaled by the entries in this listing (see new comment in A181897 for details).
The number of terms in the n-th row of this irregular triangle is given by p(n+1)-p(n) where p(n) = A000041(n) is the partitions counting function. The row sum of row n is A000166(n+1). The number of 'parts' of a partition P is K(P) := Sum_{j=1..N} m_j; if this sequence is signed by (-1)^(1+N+K), then the signed sum of row n is equal to n. The last entry in row n is n!. The first entry in odd rows n is equal to n!!. The first entry in even rows n is equal to n*(n+1)!!/3.

Examples

			The triangle begins:
    1
    2
    3,   6
   20,  24
   15,  90,  40, 120
  210, 504, 420, 720
		

Crossrefs

Programs

  • Mathematica
    partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}]
    partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}]
    partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}]
    partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}]
    A385081[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!)
    Grid[Table[Map[A385081,Select[ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder],#[[1]]==0&]],{n,2,12}]]

Formula

Given a partition P of N encoded as its multiplicities N-tuple (m_j: j=1..N) with K(P) = Sum_{j=1..N} m_j 'parts'. Define P! := Product_{j=1..N} j^m_j. Then the number of permutations in the symmetric group S_N of cycles type labelled by P is #P = multinomial(K(P); (m_j){j=1..N}) * N! / (P! * K(P)!), as stated in A181897 by Carlos Mafra.

A375921 a(n) = LCM(1,2, ..., 2n+1)/6.

Original entry on oeis.org

1, 10, 70, 420, 4620, 60060, 60060, 2042040, 38798760, 38798760, 892371480, 4461857400, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600
Offset: 1

Author

Gregory Gerard Wojnar, Sep 02 2024

Keywords

Comments

Agrees largely with A101029. The first difference is at n=8 for which a(8)/A101029(8) = 5. There are also other differences; the ratio of the two series entries appears to be always an integer.

Crossrefs

Programs

  • Mathematica
    a[n_]:= LCM@@Range[1,2n+1]/6; Array[a,22] (* Stefano Spezia, Sep 02 2024 *)
  • PARI
    a(n) = lcm([1..2*n+1])/6; \\ Michel Marcus, Sep 02 2024
    
  • Python
    from math import lcm
    def A375921(n): return lcm(*range(1,n+1<<1))//6 # Chai Wah Wu, Sep 26 2024

Formula

a(n) = A003418(2n+1)/6.

A321591 Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 1, 11, 11, 11, 36, 11, 1, 11, 11, 1, 1, 26, 26, 66, 196, 66, 26, 196, 196, 26, 1, 26, 66, 26, 1, 1, 57, 57, 302, 848, 302, 302, 1898, 1898, 302, 57, 848, 1898, 848, 57, 1, 57, 302, 302, 57, 1, 1, 120, 120, 1191, 3228, 1191, 2416, 13644
Offset: 0

Author

Gregory Gerard Wojnar, Nov 13 2018

Keywords

Comments

For N+1 = i+j+k, let P(N+1;i,j,k) = (N+1-i)*P(N;i-1,j,k) + (N+1-j)*P(N;i,j-1,k) + (N+1-k)*P(N;i,j,k-1), with P(N;i,j,k) invariant upon permutation of the indices i,j,k, also P(N;N,0,0)=1 and P(N;i,j,k) = 0 if i or j or k is negative. The indexing of these values is shown explicitly in the examples.
The row sums are the second-order Eulerian numbers, A008517; precisely, Sum_{(j,k)|j+k=N-i} P(N;i,j,k) = <> = T(N+1,i+1) of A008517. The row sum of row i=N of slice N is (N+1)!. The sum of all entries in slice N is (2*N+1)!!. The edges of the N-th triangular slice of the pyramid are row (N+1) of the first-order Eulerian triangle, A008292.

Examples

			The first few slices of the tetrahedron (and row sums) are:
  1                  (1); i=0, N=0, (j,k)=(0,0)
------------------------
   1                 (1); i=0, N=1, (j,k)=(0,0)
  1 1                (2); i=1, N=1, (j,k)=(1,0) (0,1)
------------------------
    1                (1); i=0, N=2, (j,k)=(0,0)
   4 4               (8); i=1, N=2, (j,k)=(1,0) (0,1)
  1 4 1              (6); i=2, N=2, (j,k)=(2,0) (1,1) (0,2)
------------------------
      1              (1); i=0, N=3, (j,k)=(0,0)
    11 11           (22); i=1, N=3, (j,k)=(1,0) (0,1)
   11 36 11         (58); i=2, N=3, (j,k)=(2,0) (1,1) (0,2)
  1 11 11  1        (24); i=3, N=3, (j,k)=(3,0) (2,1) (1,2) (0,3)
------------------------
         1           (1); i=0, N=4, (j,k)=(0,0)
       26 26        (52); i=1, N=4, (j,k)=(1,0) (0,1)
     66 196 66     (328); i=2, N=4, (j,k)=(2,0) (1,1) (0,2)
   26 196 196 26   (444); i=3, N=4, (j,k)=(3,0) (2,1) (1,2) (0,3)
  1  26  66  26 1  (120); i=4, N=4, (j,k)=(4,0) (3,1) (2,2) (1,3) (0,4)
		

A303647 a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1.

Original entry on oeis.org

1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665
Offset: 1

Author

Gregory Gerard Wojnar, Apr 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
           if n<1 then 0 else
           if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)
         end if end if end proc;
    seq(a(n), n=0..10);
  • Mathematica
    Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *)
    Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *)
  • PARI
    a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018

Formula

a(n) = A301483(n+2) - A195350(n+2) + A195339(n-2) (conjectured).
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(1 + x + x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)

A302764 Pascal-like triangle with A000012 as the left border and A080956 as the right border.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, -2, 1, 4, 5, 0, -5, 1, 5, 9, 5, -5, -9, 1, 6, 14, 14, 0, -14, -14, 1, 7, 20, 28, 14, -14, -28, -20, 1, 8, 27, 48, 42, 0, -42, -48, -27, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, 1, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44
Offset: 1

Author

Gregory Gerard Wojnar, Apr 12 2018

Keywords

Comments

Number the rows of the triangle beginning with n=0. For each row construct a degree n polynomial with regularly decreasing powers, denoting the polynomial as f_n(x); e.g., for row 2 we have f_2(x)=1x^2+2x+0. Then construct g_n(x)=x^2*f_{n-1}(x)-(n+1)x+1. It obtains that g_n(x)=(1-x)(2-(1+x)^n). These g_n(x) are the denominators of the generating functions for the following sequences: A024537 (n=2); A195350 (n=3); A301417 (n=4); A301420 (n=5); A301421 (n=6); A301424 (n=7). For these sequences the asymptotic term-to-term ratios are 1/(2^(1/n)-1). The numerators of the generating functions are 1-x(x+1)^(n-1).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  0;
  1, 3,  2, -2;
  1, 4,  5,  0, -5;
  1, 5,  9,  5, -5,  -9;
  1, 6, 14, 14,  0, -14, -14;
  1, 7, 20, 28, 14, -14, -28, -20;
  ...
		

Programs

  • PARI
    T(n,k) = if (k==0, 1, if (k==n, (n+1)*(2-n)/2, if (k>n, 0, T(n-1,k) + T(n-1,k-1))));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 21 2018

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) with T(n, 0) = 1 and T(n, n) = (n+1)*(2-n)/2.

A301483 a(n) = floor(a(n-1)/(2^(1/3)-1)) with a(1)=1.

Original entry on oeis.org

1, 3, 11, 42, 161, 619, 2381, 9160, 35241, 135583, 521631, 2006882, 7721121, 29705639, 114287161, 439699520, 1691665681, 6508382763, 25039844851, 96336348522, 370636962881, 1425959779059, 5486126574341, 21106896023080, 81205027571321, 312421897357543
Offset: 1

Author

Gregory Gerard Wojnar, Mar 22 2018

Keywords

Comments

a(n+1)/a(n) approaches 1/(2^(1/3)-1).

Crossrefs

Cf. A024537, A195350 (also has 1/(2^(1/3)-1) ratio), A303647.

Programs

  • Magma
    [n le 1 select 1 else Floor(Self(n-1)/(2^(1/3)-1)): n in [1..30]]; // Vincenzo Librandi, Apr 04 2018
  • Maple
    a:=proc(n) option remember;
       if n<1 then 0  else if n=1 then 1 else floor(a(n-1)/(2^(1/3)-1))
    end if end if end proc:
    seq(a(n), n=1..25);
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==Floor[a[n-1]/(2^(1/3)-1)]}, a, {n, 30}] (* Vincenzo Librandi, Apr 04 2018 *)
  • PARI
    a=vector(50); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(2^(1/3)-1)); a \\ Altug Alkan, Mar 22 2018
    

Formula

Conjectures from Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 - x - x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A195350(n) + A303647(n-2) - A195339(n-4) (conjectured).

A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.

Original entry on oeis.org

1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376
Offset: 1

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 5 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/5)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.

Programs

Formula

G.f.: (-x*(x+1)^4+1)/(x^6+4*x^5+5*x^4-5*x^2-6*x+1); this denominator equals (1-x)*(2-(x+1)^5) (conjectured).
a(n+14) = 7*a(n+13) - a(n+12) - 6*a(n+11) + 2*a(n+10) - a(n+9) + 4*a(n+8) + a(n+7) + 4*a(n+5) + 2*a(n+4) - a(n+3) - 5*a(n+2) - 4*a(n+1) - a(n) (conjectured).

A301421 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 6 data.

Original entry on oeis.org

1, 6, 46, 371, 3026, 24707, 201748, 1647429, 13452565, 109850886, 897019828, 7324880157, 59813470848, 488424550081, 3988374821616, 32568251770049, 265945672309613, 2171657880797162, 17733313387923690, 144806604435722311, 1182461068019218530, 9655734852907204771
Offset: 1

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 6 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/6)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.

Programs

Formula

G.f.: (-x*(x+1)^5+1)/(x^7+5*x^6+9*x^5+5*x^4-5*x^3-9*x^2-7*x+1); this denominator equals (1-x)*(2-(1+x)^6) (conjectured).

Extensions

a(21) corrected by Georg Fischer, Aug 18 2021

A301424 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 7 data.

Original entry on oeis.org

1, 7, 64, 609, 5846, 56161, 539540, 5183417, 49797685, 478412117, 4596160548, 44155846113, 424210322004, 4075437640457, 39153200900024, 376149330687809, 3613710136705565, 34717331354145139, 333533418773956668, 3204294140706218329, 30784024515164777522
Offset: 1

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 7 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/7)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) The sums of the negative coefficients are 1 less than the corresponding sums of the positive coefficients. See extended comment in A301417.

Programs

Formula

G.f.: (-x*(x+1)^6+1)/(x^2*(x^6+6*x^5+14*x^4+14*x^3-14*x-14)-8*x+1); this denominator equals (1-x)*(2-(1+x)^7) (conjectured).

A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.

Original entry on oeis.org

1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 4 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/4)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.)
More precisely, given a finite collection X:=(x(i), i =1..n) of data, the Girard-Waring formulae express the sum of the k-th powers of the data, S_k(X):=Sum(x(i)^k, i=1..n), in terms of the elementary symmetric polynomials in the data. The j-th elementary symmetric polynomial is s_j(X):=Sum(Product(x(i), x(i) in X_0), X_0 \subseteq X, where |X_0|=j). So the Girard-Waring formulae provide coefficients a(J,k) such that S_k(X)=Sum(a(J,k)*Product(s_j(X), j \in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). [Thus J is an integer partition of k.] By "mean powers" I mean T_k(X):=Sum(x(i)^k, i=1..n)/n. By the "mean symmetric polynomials" I mean t_j(X):=s_j(X)/binomial(n,j). The Girard-Waring mean formulae then provide coefficients b(J,k,n) such that T_k(X)=Sum(b(J,k,n)*Product(t_j(X), j in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). So the sums of positive coefficients that I reference, for a fixed data set size n, and a fixed power k, are Sum(b(J,k,n), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k, such that b(J,k,n)>0).

Programs

  • Mathematica
    CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
    LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
  • PARI
    lista(4, nn) \\ use pari script link;  Michel Marcus, Apr 21 2018

Formula

G.f.: (-x*(x+1)^3+1)/(x^5+3*x^4+2*x^3-2*x^2-5*x+1); this denominator equals (1-x)*(2-(1+x)^4).
a(n+5) = 5*a(n+4)+2*a(n+3)-2*a(n+2)-3*a(n+1)-a(n).