Gregory Gerard Wojnar has authored 34 sequences. Here are the ten most recent ones:
A385081
Irregular triangle T(n,k) of refined derangement counts in the symmetric group S_(n+1), refined per cycle type.
Original entry on oeis.org
1, 2, 3, 6, 20, 24, 15, 90, 40, 120, 210, 504, 420, 720, 105, 1260, 1120, 3360, 2688, 1260, 5040, 2520, 9072, 15120, 25920, 2240, 20160, 18144, 40320, 945, 18900, 25200, 75600, 120960, 56700, 226800, 50400, 172800, 151200, 72576, 362880
Offset: 1
The triangle begins:
1
2
3, 6
20, 24
15, 90, 40, 120
210, 504, 420, 720
-
partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}]
partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}]
partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}]
partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}]
A385081[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!)
Grid[Table[Map[A385081,Select[ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder],#[[1]]==0&]],{n,2,12}]]
A375921
a(n) = LCM(1,2, ..., 2n+1)/6.
Original entry on oeis.org
1, 10, 70, 420, 4620, 60060, 60060, 2042040, 38798760, 38798760, 892371480, 4461857400, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600
Offset: 1
-
a[n_]:= LCM@@Range[1,2n+1]/6; Array[a,22] (* Stefano Spezia, Sep 02 2024 *)
-
a(n) = lcm([1..2*n+1])/6; \\ Michel Marcus, Sep 02 2024
-
from math import lcm
def A375921(n): return lcm(*range(1,n+1<<1))//6 # Chai Wah Wu, Sep 26 2024
A321591
Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 1, 11, 11, 11, 36, 11, 1, 11, 11, 1, 1, 26, 26, 66, 196, 66, 26, 196, 196, 26, 1, 26, 66, 26, 1, 1, 57, 57, 302, 848, 302, 302, 1898, 1898, 302, 57, 848, 1898, 848, 57, 1, 57, 302, 302, 57, 1, 1, 120, 120, 1191, 3228, 1191, 2416, 13644
Offset: 0
The first few slices of the tetrahedron (and row sums) are:
1 (1); i=0, N=0, (j,k)=(0,0)
------------------------
1 (1); i=0, N=1, (j,k)=(0,0)
1 1 (2); i=1, N=1, (j,k)=(1,0) (0,1)
------------------------
1 (1); i=0, N=2, (j,k)=(0,0)
4 4 (8); i=1, N=2, (j,k)=(1,0) (0,1)
1 4 1 (6); i=2, N=2, (j,k)=(2,0) (1,1) (0,2)
------------------------
1 (1); i=0, N=3, (j,k)=(0,0)
11 11 (22); i=1, N=3, (j,k)=(1,0) (0,1)
11 36 11 (58); i=2, N=3, (j,k)=(2,0) (1,1) (0,2)
1 11 11 1 (24); i=3, N=3, (j,k)=(3,0) (2,1) (1,2) (0,3)
------------------------
1 (1); i=0, N=4, (j,k)=(0,0)
26 26 (52); i=1, N=4, (j,k)=(1,0) (0,1)
66 196 66 (328); i=2, N=4, (j,k)=(2,0) (1,1) (0,2)
26 196 196 26 (444); i=3, N=4, (j,k)=(3,0) (2,1) (1,2) (0,3)
1 26 66 26 1 (120); i=4, N=4, (j,k)=(4,0) (3,1) (2,2) (1,3) (0,4)
A303647
a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1.
Original entry on oeis.org
1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665
Offset: 1
-
a := proc(n) option remember;
if n<1 then 0 else
if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)
end if end if end proc;
seq(a(n), n=0..10);
-
Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *)
Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *)
-
a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018
A302764
Pascal-like triangle with A000012 as the left border and A080956 as the right border.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 3, 2, -2, 1, 4, 5, 0, -5, 1, 5, 9, 5, -5, -9, 1, 6, 14, 14, 0, -14, -14, 1, 7, 20, 28, 14, -14, -28, -20, 1, 8, 27, 48, 42, 0, -42, -48, -27, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, 1, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 0;
1, 3, 2, -2;
1, 4, 5, 0, -5;
1, 5, 9, 5, -5, -9;
1, 6, 14, 14, 0, -14, -14;
1, 7, 20, 28, 14, -14, -28, -20;
...
-
T(n,k) = if (k==0, 1, if (k==n, (n+1)*(2-n)/2, if (k>n, 0, T(n-1,k) + T(n-1,k-1))));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 21 2018
A301483
a(n) = floor(a(n-1)/(2^(1/3)-1)) with a(1)=1.
Original entry on oeis.org
1, 3, 11, 42, 161, 619, 2381, 9160, 35241, 135583, 521631, 2006882, 7721121, 29705639, 114287161, 439699520, 1691665681, 6508382763, 25039844851, 96336348522, 370636962881, 1425959779059, 5486126574341, 21106896023080, 81205027571321, 312421897357543
Offset: 1
-
[n le 1 select 1 else Floor(Self(n-1)/(2^(1/3)-1)): n in [1..30]]; // Vincenzo Librandi, Apr 04 2018
-
a:=proc(n) option remember;
if n<1 then 0 else if n=1 then 1 else floor(a(n-1)/(2^(1/3)-1))
end if end if end proc:
seq(a(n), n=1..25);
-
RecurrenceTable[{a[1]==1, a[n]==Floor[a[n-1]/(2^(1/3)-1)]}, a, {n, 30}] (* Vincenzo Librandi, Apr 04 2018 *)
-
a=vector(50); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(2^(1/3)-1)); a \\ Altug Alkan, Mar 22 2018
A301420
Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.
Original entry on oeis.org
1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376
Offset: 1
A301421
Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 6 data.
Original entry on oeis.org
1, 6, 46, 371, 3026, 24707, 201748, 1647429, 13452565, 109850886, 897019828, 7324880157, 59813470848, 488424550081, 3988374821616, 32568251770049, 265945672309613, 2171657880797162, 17733313387923690, 144806604435722311, 1182461068019218530, 9655734852907204771
Offset: 1
A301424
Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 7 data.
Original entry on oeis.org
1, 7, 64, 609, 5846, 56161, 539540, 5183417, 49797685, 478412117, 4596160548, 44155846113, 424210322004, 4075437640457, 39153200900024, 376149330687809, 3613710136705565, 34717331354145139, 333533418773956668, 3204294140706218329, 30784024515164777522
Offset: 1
A301417
Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.
Original entry on oeis.org
1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1
- Gregory Gerard Wojnar, Table of n, a(n) for n = 1..68
- G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, Universal peculiar linear mean relationships in all polynomials, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=4 p. 23.
- Gregory Gerard Wojnar, Java program. Within the program, the variable I denotes the number of data; J denotes the exponent.
- Michel Marcus, pari script (translated from java)
- Index entries for linear recurrences with constant coefficients, signature (5, 2, -2, -3, -1).
-
CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
-
lista(4, nn) \\ use pari script link; Michel Marcus, Apr 21 2018
Comments