A195350
Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).
Original entry on oeis.org
1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, Universal peculiar linear mean relationships in all polynomials, arXiv:1706.08381 [math.GM], 2017. See Table GW. n=3 p. 22.
- Index entries for linear recurrences with constant coefficients, signature (4,0,-2,-1).
Cf.
A185962 (gives the coefficients of numerator and denominator of the g.f., row 4 and 5 of its triangular array). Sequences likewise related to
A185962:
A000012 (row 1 and 2),
A001333 (row 2 and 3) and
A006190 (row 3 and 4).
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4)));
-
[seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
-
CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
-
makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
-
Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
A301417
Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.
Original entry on oeis.org
1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1
- Gregory Gerard Wojnar, Table of n, a(n) for n = 1..68
- G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, Universal peculiar linear mean relationships in all polynomials, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=4 p. 23.
- Gregory Gerard Wojnar, Java program. Within the program, the variable I denotes the number of data; J denotes the exponent.
- Michel Marcus, pari script (translated from java)
- Index entries for linear recurrences with constant coefficients, signature (5, 2, -2, -3, -1).
-
CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
-
lista(4, nn) \\ use pari script link; Michel Marcus, Apr 21 2018
A301420
Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.
Original entry on oeis.org
1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376
Offset: 1
A301424
Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 7 data.
Original entry on oeis.org
1, 7, 64, 609, 5846, 56161, 539540, 5183417, 49797685, 478412117, 4596160548, 44155846113, 424210322004, 4075437640457, 39153200900024, 376149330687809, 3613710136705565, 34717331354145139, 333533418773956668, 3204294140706218329, 30784024515164777522
Offset: 1
Showing 1-4 of 4 results.
Comments