cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195350 Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0

Views

Author

Bruno Berselli, Sep 16 2011

Keywords

Comments

Rewrite the Girard-Waring formulae to express the mean powers in terms of the mean symmetric functions of the data values; the results are polynomials in the mean symmetric polynomials, indexed by the power n. Then for 3 data points, the sum of the positive coefficients in the n-th such polynomial is a(n). a(n+1)/a(n) approaches 1/(2^(1/3)-1). See extended comment in A301417. - Gregory Gerard Wojnar, Mar 19 2018

Crossrefs

Cf. A185962 (gives the coefficients of numerator and denominator of the g.f., row 4 and 5 of its triangular array). Sequences likewise related to A185962: A000012 (row 1 and 2), A001333 (row 2 and 3) and A006190 (row 3 and 4).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4)));
    
  • Maple
    [seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
  • Maxima
    makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
    

Formula

G.f.: (1-3*x-x^2)/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4).
a(n) = A301483(n) - A303647(n-2) + A195339(n-4) (conjectured). - Gregory Gerard Wojnar, Apr 27 2018

A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.

Original entry on oeis.org

1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 4 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/4)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.)
More precisely, given a finite collection X:=(x(i), i =1..n) of data, the Girard-Waring formulae express the sum of the k-th powers of the data, S_k(X):=Sum(x(i)^k, i=1..n), in terms of the elementary symmetric polynomials in the data. The j-th elementary symmetric polynomial is s_j(X):=Sum(Product(x(i), x(i) in X_0), X_0 \subseteq X, where |X_0|=j). So the Girard-Waring formulae provide coefficients a(J,k) such that S_k(X)=Sum(a(J,k)*Product(s_j(X), j \in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). [Thus J is an integer partition of k.] By "mean powers" I mean T_k(X):=Sum(x(i)^k, i=1..n)/n. By the "mean symmetric polynomials" I mean t_j(X):=s_j(X)/binomial(n,j). The Girard-Waring mean formulae then provide coefficients b(J,k,n) such that T_k(X)=Sum(b(J,k,n)*Product(t_j(X), j in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). So the sums of positive coefficients that I reference, for a fixed data set size n, and a fixed power k, are Sum(b(J,k,n), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k, such that b(J,k,n)>0).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
    LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
  • PARI
    lista(4, nn) \\ use pari script link;  Michel Marcus, Apr 21 2018

Formula

G.f.: (-x*(x+1)^3+1)/(x^5+3*x^4+2*x^3-2*x^2-5*x+1); this denominator equals (1-x)*(2-(1+x)^4).
a(n+5) = 5*a(n+4)+2*a(n+3)-2*a(n+2)-3*a(n+1)-a(n).

A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.

Original entry on oeis.org

1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 5 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/5)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.

Crossrefs

Programs

Formula

G.f.: (-x*(x+1)^4+1)/(x^6+4*x^5+5*x^4-5*x^2-6*x+1); this denominator equals (1-x)*(2-(x+1)^5) (conjectured).
a(n+14) = 7*a(n+13) - a(n+12) - 6*a(n+11) + 2*a(n+10) - a(n+9) + 4*a(n+8) + a(n+7) + 4*a(n+5) + 2*a(n+4) - a(n+3) - 5*a(n+2) - 4*a(n+1) - a(n) (conjectured).

A301424 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 7 data.

Original entry on oeis.org

1, 7, 64, 609, 5846, 56161, 539540, 5183417, 49797685, 478412117, 4596160548, 44155846113, 424210322004, 4075437640457, 39153200900024, 376149330687809, 3613710136705565, 34717331354145139, 333533418773956668, 3204294140706218329, 30784024515164777522
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 7 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/7)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) The sums of the negative coefficients are 1 less than the corresponding sums of the positive coefficients. See extended comment in A301417.

Crossrefs

Programs

Formula

G.f.: (-x*(x+1)^6+1)/(x^2*(x^6+6*x^5+14*x^4+14*x^3-14*x-14)-8*x+1); this denominator equals (1-x)*(2-(1+x)^7) (conjectured).
Showing 1-4 of 4 results.