cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A287768 Irregular triangle read by rows: mean version of Girard-Waring formula A210258, for m = 3 data values.

Original entry on oeis.org

1, 3, -2, 9, -9, 1, 27, -36, 4, 6, 81, -135, 15, 45, -5, 243, -486, 54, 243, -36, -18, 1, 729, -1701, 189, 1134, -189, -189, 7, 21, 2187, -5832, 648, 4860, -864, -1296, 36, 216, 54, -8, 6561, -19683, 2187, 19683, -3645, -7290, 162, 1458, 729, -81, -81, 1, 19683, -65610, 7290, 76545, -14580, -36450, 675, 8100, 6075, -540, -1080, 10, -162, 45
Offset: 1

Views

Author

Gregory Gerard Wojnar, May 31 2017

Keywords

Comments

Let SM_k = Sum( d_(t_1, t_2, t_3)* eM_1^t_1 * eM_2^t_2 * eM_3^t_3) summed over all length 3 integer partitions of k, i.e., 1*t_1+2*t_2+3*t_3=k, where SM_k are the averaged k-th power sum symmetric polynomials in 3 data (i.e., SM_k = S_k/3 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(3,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2, t_3) form an irregular triangle, with one row for each k value starting with k=1; "irregular" means that the number of terms in successive rows is nondecreasing.
The sum of the positive terms in successive rows appears to be A195350; row sums of negative terms is always 1 less than corresponding sum of positive terms.

Examples

			Triangle begins:
    1;
    3,   -2;
    9,   -9,  1;
   27,  -36,  4,   6;
   81, -135, 15,  45,  -5;
  243, -486, 54, 243, -36, -18, 1;
  ...
The first few rows describe:
Row 1: SM_1 = 1 eM_1;
Row 2: SM_2 = 3*(eM_1)^2 - 2*eM_2;
Row 3: SM_3 = 9*(eM_1)^3 - 9*eM_1*eM_2 + 1*eM_3;
Row 4: SM_4 = 27*(eM_1)^4 - 36*(eM_1)^2*eM_2 + 4*eM_1*eM_3 + 6*(eM_2)^2;
Row 5: SM_5 = 81*(eM_1)^5 - 135*(eM_1)^3*eM_2 + 15*(eM_1)^2*eM_3 + 45*eM_1*(eM_2)^2 - 5*eM_2*eM_3.
		

Crossrefs

Row sums of the positive terms appears to be A195350.
First entries of row n is A000244(n).
Second entries of row n, for n>1, is given by -n*3^(n-2).
Third entries of row n, for n>2, is given by n*3^(n-4), A006234.
Fourth entries of row n, for n>3, is given by n*(n-3)*3^(n-3)/2!.
Fifth entries of row n, for n>4, is given by -n*(n-4)*3^(n-5)/1!.
Corresponding sequences for different sized data multisets are: A028297 (m=2), A288199 (m=4), A288207 (m=5), A288211 (m=6), A288245 (m=7), A288188 (m=8).
Cf. A210258.

Programs

  • Java
    // See Wojnar link.

A185962 Riordan array ((1-x)^2/(1-x+x^2), x(1-x)^2/(1-x+x^2)).

Original entry on oeis.org

1, -1, 1, -1, -2, 1, 0, -1, -3, 1, 1, 2, 0, -4, 1, 1, 3, 5, 2, -5, 1, 0, 0, 3, 8, 5, -6, 1, -1, -4, -6, -1, 10, 9, -7, 1, -1, -4, -10, -16, -10, 10, 14, -8, 1, 0, 1, 0, -10, -26, -24, 7, 20, -9, 1, 1, 6, 15, 20, 5, -30, -42, 0, 27, -10, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Comments

Riordan array (g(x),xg(x)) where g(x)=(1-x)(1-x^2)(1-x^3)/(1-x^6).
Inverse is A185967. Row sums are A185963.
Diagonal sums are A185964. Central coefficients are A185965.
Subtriangle of the triangle given by (0, -1, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012

Examples

			Triangle begins:
   1;
  -1,  1;
  -1, -2,   1;
   0, -1,  -3,   1;
   1,  2,   0,  -4,   1;
   1,  3,   5,   2,  -5,   1;
   0,  0,   3,   8,   5,  -6,   1;
  -1, -4,  -6,  -1,  10,   9,  -7,  1;
  -1, -4, -10, -16, -10,  10,  14, -8,  1;
   0,  1,   0, -10, -26, -24,   7, 20, -9,   1;
   1,  6,  15,  20,   5, -30, -42,  0, 27, -10, 1;
  ...
From _Philippe Deléham_, Mar 19 2012: (Start)
(0, -1, 2, -1/2, 1/2, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0, -1,  1;
  0, -1, -2,  1;
  0,  0, -1, -3,  1;
  0,  1,  2,  0, -4,  1;
  0,  1,  3,  5,  2, -5,  1;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - y*x + x/(1 - x)^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Jul 23 2017 *)

Formula

T(n,k) = Sum_{i=0..(2*k+2)} C(2*k+2,i)*Sum_{j=0..(n-k-i)} C(k+j,j)*C(j,n-k-i-j)*(-1)^(n-k-j).
G.f.: 1/(1-y*x+x/(1-x)^2). - Philippe Deléham, Feb 07 2012
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = -1, T(2,1) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham , Nov 11 2013

A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.

Original entry on oeis.org

1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 4 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/4)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.)
More precisely, given a finite collection X:=(x(i), i =1..n) of data, the Girard-Waring formulae express the sum of the k-th powers of the data, S_k(X):=Sum(x(i)^k, i=1..n), in terms of the elementary symmetric polynomials in the data. The j-th elementary symmetric polynomial is s_j(X):=Sum(Product(x(i), x(i) in X_0), X_0 \subseteq X, where |X_0|=j). So the Girard-Waring formulae provide coefficients a(J,k) such that S_k(X)=Sum(a(J,k)*Product(s_j(X), j \in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). [Thus J is an integer partition of k.] By "mean powers" I mean T_k(X):=Sum(x(i)^k, i=1..n)/n. By the "mean symmetric polynomials" I mean t_j(X):=s_j(X)/binomial(n,j). The Girard-Waring mean formulae then provide coefficients b(J,k,n) such that T_k(X)=Sum(b(J,k,n)*Product(t_j(X), j in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). So the sums of positive coefficients that I reference, for a fixed data set size n, and a fixed power k, are Sum(b(J,k,n), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k, such that b(J,k,n)>0).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
    LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
  • PARI
    lista(4, nn) \\ use pari script link;  Michel Marcus, Apr 21 2018

Formula

G.f.: (-x*(x+1)^3+1)/(x^5+3*x^4+2*x^3-2*x^2-5*x+1); this denominator equals (1-x)*(2-(1+x)^4).
a(n+5) = 5*a(n+4)+2*a(n+3)-2*a(n+2)-3*a(n+1)-a(n).

A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.

Original entry on oeis.org

1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 5 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/5)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.

Crossrefs

Programs

Formula

G.f.: (-x*(x+1)^4+1)/(x^6+4*x^5+5*x^4-5*x^2-6*x+1); this denominator equals (1-x)*(2-(x+1)^5) (conjectured).
a(n+14) = 7*a(n+13) - a(n+12) - 6*a(n+11) + 2*a(n+10) - a(n+9) + 4*a(n+8) + a(n+7) + 4*a(n+5) + 2*a(n+4) - a(n+3) - 5*a(n+2) - 4*a(n+1) - a(n) (conjectured).

A301421 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 6 data.

Original entry on oeis.org

1, 6, 46, 371, 3026, 24707, 201748, 1647429, 13452565, 109850886, 897019828, 7324880157, 59813470848, 488424550081, 3988374821616, 32568251770049, 265945672309613, 2171657880797162, 17733313387923690, 144806604435722311, 1182461068019218530, 9655734852907204771
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 6 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/6)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.

Crossrefs

Programs

Formula

G.f.: (-x*(x+1)^5+1)/(x^7+5*x^6+9*x^5+5*x^4-5*x^3-9*x^2-7*x+1); this denominator equals (1-x)*(2-(1+x)^6) (conjectured).

Extensions

a(21) corrected by Georg Fischer, Aug 18 2021

A301424 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 7 data.

Original entry on oeis.org

1, 7, 64, 609, 5846, 56161, 539540, 5183417, 49797685, 478412117, 4596160548, 44155846113, 424210322004, 4075437640457, 39153200900024, 376149330687809, 3613710136705565, 34717331354145139, 333533418773956668, 3204294140706218329, 30784024515164777522
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 7 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/7)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) The sums of the negative coefficients are 1 less than the corresponding sums of the positive coefficients. See extended comment in A301417.

Crossrefs

Programs

Formula

G.f.: (-x*(x+1)^6+1)/(x^2*(x^6+6*x^5+14*x^4+14*x^3-14*x-14)-8*x+1); this denominator equals (1-x)*(2-(1+x)^7) (conjectured).

A302764 Pascal-like triangle with A000012 as the left border and A080956 as the right border.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, -2, 1, 4, 5, 0, -5, 1, 5, 9, 5, -5, -9, 1, 6, 14, 14, 0, -14, -14, 1, 7, 20, 28, 14, -14, -28, -20, 1, 8, 27, 48, 42, 0, -42, -48, -27, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, 1, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44
Offset: 1

Views

Author

Gregory Gerard Wojnar, Apr 12 2018

Keywords

Comments

Number the rows of the triangle beginning with n=0. For each row construct a degree n polynomial with regularly decreasing powers, denoting the polynomial as f_n(x); e.g., for row 2 we have f_2(x)=1x^2+2x+0. Then construct g_n(x)=x^2*f_{n-1}(x)-(n+1)x+1. It obtains that g_n(x)=(1-x)(2-(1+x)^n). These g_n(x) are the denominators of the generating functions for the following sequences: A024537 (n=2); A195350 (n=3); A301417 (n=4); A301420 (n=5); A301421 (n=6); A301424 (n=7). For these sequences the asymptotic term-to-term ratios are 1/(2^(1/n)-1). The numerators of the generating functions are 1-x(x+1)^(n-1).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  0;
  1, 3,  2, -2;
  1, 4,  5,  0, -5;
  1, 5,  9,  5, -5,  -9;
  1, 6, 14, 14,  0, -14, -14;
  1, 7, 20, 28, 14, -14, -28, -20;
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = if (k==0, 1, if (k==n, (n+1)*(2-n)/2, if (k>n, 0, T(n-1,k) + T(n-1,k-1))));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 21 2018

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) with T(n, 0) = 1 and T(n, n) = (n+1)*(2-n)/2.

A301483 a(n) = floor(a(n-1)/(2^(1/3)-1)) with a(1)=1.

Original entry on oeis.org

1, 3, 11, 42, 161, 619, 2381, 9160, 35241, 135583, 521631, 2006882, 7721121, 29705639, 114287161, 439699520, 1691665681, 6508382763, 25039844851, 96336348522, 370636962881, 1425959779059, 5486126574341, 21106896023080, 81205027571321, 312421897357543
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 22 2018

Keywords

Comments

a(n+1)/a(n) approaches 1/(2^(1/3)-1).

Crossrefs

Cf. A024537, A195350 (also has 1/(2^(1/3)-1) ratio), A303647.

Programs

  • Magma
    [n le 1 select 1 else Floor(Self(n-1)/(2^(1/3)-1)): n in [1..30]]; // Vincenzo Librandi, Apr 04 2018
  • Maple
    a:=proc(n) option remember;
       if n<1 then 0  else if n=1 then 1 else floor(a(n-1)/(2^(1/3)-1))
    end if end if end proc:
    seq(a(n), n=1..25);
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==Floor[a[n-1]/(2^(1/3)-1)]}, a, {n, 30}] (* Vincenzo Librandi, Apr 04 2018 *)
  • PARI
    a=vector(50); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(2^(1/3)-1)); a \\ Altug Alkan, Mar 22 2018
    

Formula

Conjectures from Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 - x - x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A195350(n) + A303647(n-2) - A195339(n-4) (conjectured).

A303647 a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1.

Original entry on oeis.org

1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665
Offset: 1

Views

Author

Gregory Gerard Wojnar, Apr 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
           if n<1 then 0 else
           if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)
         end if end if end proc;
    seq(a(n), n=0..10);
  • Mathematica
    Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *)
    Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *)
  • PARI
    a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018

Formula

a(n) = A301483(n+2) - A195350(n+2) + A195339(n-2) (conjectured).
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(1 + x + x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
Showing 1-9 of 9 results.