A288842
Triangle (sans apex) of coefficients of terms of the form (eM_1)^j*(eM_2)^k re construction of triangle A287768.
Original entry on oeis.org
1, 2, 3, 9, 6, 9, 36, 45, 18, 27, 135, 243, 189, 54, 81, 486, 1134, 1296, 729, 162, 243, 1701, 4860, 7290, 6075, 2673, 486, 729, 5832, 19683, 36450, 40095, 26244, 9477, 1458, 2187, 19683, 76545, 168399, 229635, 199017, 107163, 32805, 4374, 6561, 65610, 288684, 734832, 1194102, 1285956, 918540, 419904, 111537, 13122
Offset: 1
Triangle begins:
1, 2;
3, 9, 6;
9, 36, 45, 18;
-
T[1, 1] = 1; T[1, 2] = 2;
T[n_, k_] /; 1 <= k <= n+1 := T[n, k] = 3 T[n-1, k-1] + 3 T[n-1, k];
T[, ] = 0;
Table[T[n, k], {n, 1, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Nov 16 2018 *)
A028297
Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).
Original entry on oeis.org
1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0
Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 ....
0: 1
1: 1
2: 2 -1
3: 4 -3
4: 8 -8 1
5: 16 -20 5
6: 32 -48 18 -1
7: 64 -112 56 -7
8: 128 -256 160 -32 1
9: 256 -576 432 -120 9
10: 512 -1280 1120 -400 50 -1
11: 1024 -2816 2816 -1232 220 -11
12: 2048 -6144 6912 -3584 840 -72 1
13: 4096 -13312 16640 -9984 2912 -364 13
14: 8192 -28672 39424 -26880 9408 -1568 98 -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
1;
1, 0;
2, -1, 0;
4, -3, 0, 0;
8, -8, 1, 0, 0;
16, -20, 5, 0, 0, 0;
32, -48, 18, -1, 0, 0, 0; (End)
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy] p. 795.
- Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120--135. MR3149030.
- Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, see page 172.
- Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 94.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=2, p. 22, arXiv:1706.08381 [math.GM], 2017.
Cf.
A053120 (row reversed table including zeros).
-
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
-
t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
Row length sequence and link to Abramowitz-Stegun added by
Wolfdieter Lang, Aug 02 2014
A288188
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=8 data values.
Original entry on oeis.org
1, 8, -7, 64, -84, 21, 512, -896, 224, 196, -35, 4096, -8960, 2240, 3920, -350, -980, 35, 32768, -86016, 21504, 56448, -3360, -18816, 336, -5488, 1470, 1176, -21, 262144, -802816, 200704, 702464, -31360, -263424, 3136, -153664, 27440, 21952, -196, 38416, -1372, -3430, 7
Offset: 1
Triangle begins
1;
8, -7;
64, -84, 21;
512, -896, 224, 196, -35;
4096, -8960, 2240, 3920, -350, -980, 35;
...
A288199
Irregular triangle read by rows: mean version of Girard-Waring formula (cf. A210258), for m = 4 data values.
Original entry on oeis.org
1, 4, -3, 16, -18, 3, 64, -96, 16, 18, -1, 256, -480, 80, 180, -30, -5, 1024, -2304, 384, 1296, -288, -108, -24, 9, 12, 4096, -10752, 1792, 8064, -2016, -1512, 112, 252, -112, 84, -7
Offset: 1
Triangle begins:
1;
4, -3;
16, -18, 3;
64, -96, 16, 18, -1;
256, -480, 80, 180, -5, -30;
...
The first few rows describe:
Row 1: SM_1 = 1 eM_1;
Row 2: SM_2 = 4*(eM_1)^2 - 3*eM_2;
Row 3: SM_3 = 16*(eM_1)^3 - 18*eM_1*eM_2 + 3*eM_3;
Row 4: SM_4 = 64*(eM_1)^4 - 96*(eM_1)^2*eM_2 + 16*eM_1*eM_3 + 18*(eM_2)^2 - 1*eM_4;
Row 5: SM_5 = 256*(eM_1)^5 - 480*(eM_1)^3*eM_2 + 80*(eM_1)^2*eM_2 + 180*eM_1*(eM_2)^2 - 30*eM_2*eM_3 - 5*eM_1*eM_4.
A288211
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=6 data values.
Original entry on oeis.org
1, 6, -5, 36, -45, 10, 216, -360, 80, 75, -10, 1296, -2700, 600, 1125, -250, -75, 5, 7776, -19440, 4320, 12150, -3600, -1125, -540, 225, 200, 36, -1, 46656, -136080, 30240, 113400, -37800, -23625, 2800, 5250, -3780, 3150, -350, 252, -105, -7
Offset: 1
Triangle begins:
1;
6,-5;
36,-45,10;
216,-360,80,75,-10;
1296,-2700,600,1125,-250,-75,5;
7776,-19440,4320,12150,-3600,-1125,-540,225,200,36,-1;
...
Above represents:
SM_1 = eM_1;
SM_2 = 6*(eM_1)^2 - 5*eM_2;
SM_3 = 36*(eM_1)^3 - 45*eM_1*eM_2 + 10*eM_3;
SM_4 = 216*(eM_1)^4 - 360*(eM_1)^2*eM_2 + 80*eM_1*eM_3 + 75*(eM_2)^2 - 10*eM_4;
SM_5 = 1296*(eM_1)^5 - 2700*(eM_1)^3*eM_2 + 600*(eM_1)^2*eM_3 + 1125*eM_1*(eM_2)^2 - 250*eM_2*eM_3 - 75*eM_1*eM_4 + 5*eM_5;
...
First column of triangle is powers of m=6,
A000400.
A288245
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=7 data values.
Original entry on oeis.org
1, 7, -6, 49, -63, 15, 343, -588, 140, 126, -20, 2401, -5145, 1225, 2205, -175, -525, 15, 16807, -43218, 10290, 27783, -1470, -8820, 126, -2646, 630, 525, -6, 117649, -352947, 84035, 302526, -12005, -108045, 1029, -64827, 10290, 8575, -49, 15435, -441, -1225, 1
Offset: 1
Triangular array begins...
1;
7,-6;
49,-63,15;
343,-588,140,126,-20;
2401,-5145,1225,2205,-175,-525,15;
16807,-43218,10290,27783,-1470,-8820,126,-2646,630,525,-6;
117649,-352947,84035,302526,-12005,-108045,1029,64827,10290,8575,-49,15435,-441,-1225,1;
First entries of each row of triangle are powers of m=7,
A000420.
A288834
a(n) = (n+1) * 3^(n-1).
Original entry on oeis.org
2, 9, 36, 135, 486, 1701, 5832, 19683, 65610, 216513, 708588, 2302911, 7440174, 23914845, 76527504, 243931419, 774840978, 2453663097, 7748409780, 24407490807, 76709256822, 240588123669, 753145430616, 2353579470675, 7343167948506, 22876792454961
Offset: 1
-
Table[(n + 1)*3^(n - 1), {n, 27}] (* Michael De Vlieger, Jun 23 2017 *)
LinearRecurrence[{6,-9},{2,9},40] (* Harvey P. Dale, Dec 16 2018 *)
-
a(n) = (n+1)*3^(n-1) \\ Felix Fröhlich, Jun 19 2017
-
Vec((z*(2-3*z)/(1-3*z)^2) + O(z^30)) \\ Felix Fröhlich, Jun 19 2017
A288207
Irregular triangle read by rows: mean version of Girard-Waring formula A210258, for m = 5 data values.
Original entry on oeis.org
1, 5, -4, 25, -30, 6, 125, -200, 40, 40, -4, 625, -1250, 250, 500, -25, -100, 1, 3125, -7500, 1500, 4500, -150, -1200, 6, -400, 60, 60, 15625, -43750, 8750, 35000, -875, -10500, 35, -7000, 700, 700, 1400, -14, -70
Offset: 1
Triangle begins:
1;
5, -4;
25, -30, 6;
125, -200, 40, 40, -4;
625, -1250, 250, 500, -100, -25, 1;
...
Above represents:
SM_1 = 1*eM_1;
SM_2 = 5*(eM_1)^2 -4*eM_2;
SM_3 = 25*(eM_1)^3 - 30*eM_1*eM_2 + 6*eM_3;
SM_4 = 125*(eM_1)^4 - 200*(eM_1)^2*eM_2 + 40*eM_1*eM_3 + 40*(eM_2)^2 - 4*eM_4;
SM_5 = 625*(eM_1)^5 - 1250*(eM_1)^3*eM_2 + 250*(eM_1)^2*eM_3 + 500*eM_1*(eM_2)^2 - 100*eM_2*eM_3 - 25*eM_1*eM_4 + 1*eM_5;
...
First column of triangle are powers of m=5,
A000351.
A288836
a(n) = (1/3!)*3^(n+1)*(n+5)*(n+1)*(n).
Original entry on oeis.org
18, 189, 1296, 7290, 36450, 168399, 734832, 3070548, 12400290, 48715425, 187067232, 704690766, 2611501074, 9542023155, 34437376800, 122941435176, 434685788658, 1523724783237, 5299912289520, 18305618105250, 62824881337218, 214364018189079, 727538485975056
Offset: 1
-
LinearRecurrence[{12,-54,108,-81},{18,189,1296,7290},30] (* Harvey P. Dale, May 09 2025 *)
A288835
a(n) = (1/2!)*3^n*(n+3)*(n).
Original entry on oeis.org
6, 45, 243, 1134, 4860, 19683, 76545, 288684, 1062882, 3838185, 13640319, 47829690, 165809592, 569173311, 1937102445, 6543101592, 21953827710, 73222472421, 242912646603, 801960412230, 2636009007156, 8629791392475, 28148810469273, 91507169819844
Offset: 1
-
Table[(1/2!)*3^n*(n + 3) n, {n, 24}] (* Michael De Vlieger, Jun 23 2017 *)
LinearRecurrence[{9,-27,27},{6,45,243},30] (* Harvey P. Dale, Apr 04 2020 *)
Showing 1-10 of 11 results.
Comments