cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hoang Xuan Thanh

Hoang Xuan Thanh's wiki page.

Hoang Xuan Thanh has authored 5 sequences.

A386235 Number of partitions (p, q, r) of n into positive integers such that p + 11*q + 13*r is a perfect square.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 6, 3, 7, 8, 6, 7, 6, 9, 8, 9, 9, 9, 15, 11, 13, 16, 13, 17, 15, 16, 17, 16, 19, 19, 23, 19, 21, 27, 23, 26, 24, 25, 29, 27, 28, 30, 32, 32, 34, 37, 35, 36, 37, 38, 40, 38, 38, 44, 46, 43, 46, 48, 50, 50, 48, 50, 50, 54, 52, 56, 60, 54, 64, 63, 62, 64
Offset: 3

Author

Hoang Xuan Thanh, Jul 16 2025

Keywords

Comments

For n >= 3 then there exists (p, q, r) | p + q + r = n such that p + 11*q + 13*r is a perfect square. This has been proven by Sylvester's theorem.

Examples

			n = 12: (4,4,4); 4 + 11*4 + 13*4 = 10^2; (7,4,1); 7 + 11*4 + 13*1 = 8^2; so a(12) = 2.
		

Programs

  • Mathematica
    a[n_]:=Module[{cnt=0,p,m2},Do[Do[p=n-q-r;m2=p +11*q+13*r;If[IntegerQ[Sqrt[m2]],cnt++],{r, 1, n - q - 1}],{q,1,n-2}];cnt];Array[a,78,3] (* James C. McMahon, Jul 22 2025 *)
  • PARI
    a(n) = {my(cnt = 0); for (q = 1, n-2, for (r = 1, n - q - 1, p = n - q - r; m2 = p + 11*q + 13*r; if (issquare(m2), cnt++););); cnt;}

Formula

Conjecture: a(n) ~ K * n^(3/2) where K = 0.0914... from a(10000) = 91413 and a(20000) = 258667.

A380463 Partial sums of floor(n^2/13).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 108, 130, 154, 181, 211, 244, 281, 321, 365, 413, 465, 521, 581, 645, 714, 787, 865, 948, 1036, 1130, 1229, 1334, 1445, 1562, 1685, 1814, 1949, 2091, 2239, 2394, 2556, 2725, 2902, 3086, 3278, 3478
Offset: 0

Author

Hoang Xuan Thanh, Jun 22 2025

Keywords

Examples

			a(9) = 0+0+0+0+1+1+2+3+4+6 = 17.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, 3,-1}, {0, 0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89}, 60]
  • PARI
    a(n)=(2*n^3+3*n^2-35*n+48)\78 - ((n+6)%13<6)
    
  • SageMath
    (((x^4+x^9)*(1-x+x^2))/((1-x)^3*(1-x^13))).series(x, 52).coefficients(x, sparse=False) # Stefano Spezia, Jun 23 2025

Formula

G.f.: ((x^4+x^9)*(1-x+x^2))/((1-x)^3*(1-x^13)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-13) - 3*a(n-14) + 3*a(n-15) - a(n-16).
a(n) = floor((2*n^3 + 3*n^2 - 35*n + 48)/78) - [(n+6 mod 13)<6].

A384947 Positive integers m for which A183136(m) != f(m), where f(m) = floor( (m*(m+1)/2)/phi - m/2 + 1/(2*phi) ) and phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

15, 18, 36, 39, 41, 47, 49, 52, 91, 94, 96, 102, 103, 104, 107, 109, 123, 125, 128, 130, 136, 138, 141, 235, 238, 240, 246, 247, 248, 251, 252, 253, 267, 268, 269, 272, 273, 274, 277, 280, 281, 282, 285, 287, 303, 306, 322, 324, 327, 328
Offset: 1

Author

Hoang Xuan Thanh, Jun 13 2025

Keywords

Comments

f(m) is an approximation to A183136(m) = Sum_{k=1..m} floor(k/phi) based on assuming the floor in each term decreases it by 1/2 from what is otherwise a triangular sum; and further offset + 1/(2*phi) in f(m) chosen to improve the accuracy of this approximation.
The actual values of frac(k/phi) can differ from 1/2 each by a net amount which is enough to make m a term of this sequence.

Examples

			41 is term, because A183136(41) = 512 != 511 = floor(((41^2+1)*phi - 41) / (2*phi^2)).
		

Crossrefs

Programs

  • Mathematica
    PositionIndex[MapIndexed[# != Floor[PolygonalNumber[#2[[1]]]/GoldenRatio - #2[[1]]/2 + 1/(2*GoldenRatio)] &, Accumulate[Floor[Range[500]/GoldenRatio]]]][True] (* Paolo Xausa, Jun 20 2025 *)

A384328 Expansion of 1 / ((1-x)^3 * (1-x^7)).

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 37, 48, 61, 76, 93, 112, 133, 157, 184, 214, 247, 283, 322, 364, 410, 460, 514, 572, 634, 700, 770, 845, 925, 1010, 1100, 1195, 1295, 1400, 1511, 1628, 1751, 1880, 2015, 2156, 2303, 2457, 2618, 2786, 2961
Offset: 0

Author

Hoang Xuan Thanh, May 26 2025

Keywords

Comments

Number of nonnegative integer solutions of equation x + y + z + 7*w=n.
a(n) is the number of partitions of n into parts 1 of three kinds and 7 (of one kind). - Joerg Arndt, May 28 2025

Programs

  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x)^3*(1-x^7))) \\ Michel Marcus, May 27 2025

Formula

a(n) = ((n+2) * (n+9) * (n+4) - (r+2) * (r-5) * (r-3)) / 42 where r = n mod 7.
a(n) = floor((n+3) * (n^2+12*n+26) / 42).

A384063 Partial sums of A172471.

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 13, 16, 20, 24, 28, 32, 36, 41, 46, 51, 56, 61, 67, 73, 79, 85, 91, 97, 103, 110, 117, 124, 131, 138, 145, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 233, 242, 251, 260, 269, 278, 287, 296, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 426, 437
Offset: 0

Author

Hoang Xuan Thanh, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Sqrt[2*Range[0, 100]]]] (* Paolo Xausa, Jun 04 2025 *)
  • PARI
    a(n) = sum(k=1, n, sqrtint(2*k)); \\ Michel Marcus, May 23 2025

Formula

a(n) = m*n - floor((m-1)*(m+3)*(2m-1)/12), where m = A172471(n).
a(n) = m*n - A000217(m-1) - 2*A173196(m-1), where m = A172471(n).