cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A066373 a(n) = (3*n-2)*2^(n-3).

Original entry on oeis.org

2, 7, 20, 52, 128, 304, 704, 1600, 3584, 7936, 17408, 37888, 81920, 176128, 376832, 802816, 1703936, 3604480, 7602176, 15990784, 33554432, 70254592, 146800640, 306184192, 637534208, 1325400064, 2751463424, 5704253440, 11811160064, 24427626496, 50465865728, 104152956928
Offset: 2

Views

Author

N. J. A. Sloane, Jan 04 2002

Keywords

Comments

An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 59 and 440, lead to this sequence (with a leading 1 added). For the central square these vectors lead to the companion sequence A098156 (without a(1)). - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of 1's in runs of 1's of length >= 2 over all binary words with n bits. - Félix Balado, Jan 15 2024

Crossrefs

Column k=2 of A229079.

Programs

  • Maple
    seq((3*n-2)*2^(n-3),n=2..30); # Emeric Deutsch, Jul 23 2006
  • Mathematica
    Array[(3 # - 2)*2^(# - 3) &, 28, 2] (* or *)
    Drop[CoefficientList[Series[x^2*(2 - x)/(1 - 2 x)^2, {x, 0, 29}], x], 2] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    a(n) = { (3*n - 2)*2^(n - 3) } /* Harry J. Smith, Feb 11 2010 */

Formula

G.f.: x^2*(2-x)/(1-2x)^2. - Emeric Deutsch, Jul 23 2006
a(n) = 2*a(n-1) +3*2^(n-3). - Vincenzo Librandi, Mar 20 2011
a(n+1) - a(n) = A098156(n). - R. J. Mathar, Apr 25 2013
From Paul Curtz, Jun 29 2018: (Start)
a(n) = A130129(n-2) - A130129(n-3) for n >= 2.
Binomial transform of A016789.
Inverse binomial transform of A288834.
Also the main diagonal of the difference table of m -> (-1)^m*(m+2).
2, -3, 4, -5, ...
-5, 7, -9, 11, ...
12, -16, 20, -24, ...
-28, 36, -44, 52, ... . (End)

A080420 a(n) = (n+1)*(n+6)*3^n/6.

Original entry on oeis.org

1, 7, 36, 162, 675, 2673, 10206, 37908, 137781, 492075, 1732104, 6022998, 20726199, 70681653, 239148450, 803538792, 2683245609, 8910671247, 29443957164, 96855122250, 317297380491, 1035574967097, 3368233731366, 10920608743932, 35303692060125, 113819103201843
Offset: 0

Views

Author

Paul Barry, Feb 19 2003

Keywords

Comments

a(n-1) is the number of words of length n defined on 5 letters that have exactly one a and no b's or exactly two b's and no a's. For example, for n=3, a(2) = 36 since the words are (number of permutations in parentheses): acc (3), add (3), aee (3), acd (6), ace (6), ade (6), bbc (3), bbd (3), bbe (3). - Enrique Navarrete, Jun 10 2025

Crossrefs

T(n,2) in triangle A080419.

Programs

  • Magma
    [(n+1)*(n+6)*3^n/6: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    Table[(n+1)(n+6)3^n/6,{n,0,30}] (* or *) LinearRecurrence[{9,-27,27},{1,7,36},30] (* Harvey P. Dale, Apr 02 2019 *)
  • SageMath
    [(n+1)*(n+6)*3^n/6 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^3.
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = (n+6)*A288834(n)/2, for n >= 1.
a(n) = A136158(n+2, 2).
E.g.f.: (1/2)*(2 + 8*x + 3*x^2)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 17721/50 - 4356*log(3/2)/5.
Sum_{n>=0} (-1)^n/a(n) = 4392*log(4/3)/5 - 12591/50. (End)

A288836 a(n) = (1/3!)*3^(n+1)*(n+5)*(n+1)*(n).

Original entry on oeis.org

18, 189, 1296, 7290, 36450, 168399, 734832, 3070548, 12400290, 48715425, 187067232, 704690766, 2611501074, 9542023155, 34437376800, 122941435176, 434685788658, 1523724783237, 5299912289520, 18305618105250, 62824881337218, 214364018189079, 727538485975056
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 17 2017

Keywords

Crossrefs

Column k=6 of A287768.

Programs

  • Mathematica
    LinearRecurrence[{12,-54,108,-81},{18,189,1296,7290},30] (* Harvey P. Dale, May 09 2025 *)

Formula

O.g.f.: z*3^2*(2-3*z)/(1-3*z)^4.
a(n) = -A287768(n+5,6).

A288835 a(n) = (1/2!)*3^n*(n+3)*(n).

Original entry on oeis.org

6, 45, 243, 1134, 4860, 19683, 76545, 288684, 1062882, 3838185, 13640319, 47829690, 165809592, 569173311, 1937102445, 6543101592, 21953827710, 73222472421, 242912646603, 801960412230, 2636009007156, 8629791392475, 28148810469273, 91507169819844
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 17 2017

Keywords

Crossrefs

Column k=4 of A287768.

Programs

  • Mathematica
    Table[(1/2!)*3^n*(n + 3) n, {n, 24}] (* Michael De Vlieger, Jun 23 2017 *)
    LinearRecurrence[{9,-27,27},{6,45,243},30] (* Harvey P. Dale, Apr 04 2020 *)

Formula

O.g.f.: z*3^1*(2-3*z)/(1-3*z)^3.
a(n) = A287768(n+3,4).

A288838 a(n) = (1/4!)*3^(n+2)*(n+7)*(n+2)*(n+1)*(n).

Original entry on oeis.org

54, 729, 6075, 40095, 229635, 1194102, 5786802, 26572050, 116917020, 496897335, 2051893701, 8269753401, 32643763425, 126557359740, 482984209620, 1817776934388, 6757388169138, 24843338857125, 90429753439935, 326206114635555, 1167092987918319, 4144371018322194
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 17 2017

Keywords

Crossrefs

Column k=9 of A287768.

Programs

  • Mathematica
    Table[1/4! 3^(n+2) (n+7)(n+2)(n+1)n,{n,30}] (* or *) LinearRecurrence[{15,-90,270,-405,243},{54,729,6075,40095,229635},30] (* Harvey P. Dale, May 15 2022 *)
  • PARI
    a(n)=3^n*3*n*(n+1)*(n+2)*(n+7)/8 \\ Charles R Greathouse IV, Jun 19 2017

Formula

O.g.f.: z*3^3*(2-3*z)/(1-3*z)^5.
a(n) = A287768(n+7,9).

A354314 Expansion of e.g.f. 1/(1 - x/3 * (exp(3 * x) - 1)).

Original entry on oeis.org

1, 0, 2, 9, 60, 495, 4986, 58401, 780984, 11749779, 196446870, 3612882933, 72484364052, 1575418827879, 36875093680530, 924769734574185, 24737895033896304, 703105981990977915, 21159355356941587470, 672148402091190649629, 22475238194908656800460
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/3*(exp(3*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*3^(j-2)*binomial(i, j)*v[i-j+1])); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*stirling(n-k, k, 2)/(n-k)!);

Formula

a(0) = 1; a(n) = Sum_{k=2..n} k * 3^(k-2) * binomial(n,k) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * k! * Stirling2(n-k,k)/(n-k)!.

A288842 Triangle (sans apex) of coefficients of terms of the form (eM_1)^j*(eM_2)^k re construction of triangle A287768.

Original entry on oeis.org

1, 2, 3, 9, 6, 9, 36, 45, 18, 27, 135, 243, 189, 54, 81, 486, 1134, 1296, 729, 162, 243, 1701, 4860, 7290, 6075, 2673, 486, 729, 5832, 19683, 36450, 40095, 26244, 9477, 1458, 2187, 19683, 76545, 168399, 229635, 199017, 107163, 32805, 4374, 6561, 65610, 288684, 734832, 1194102, 1285956, 918540, 419904, 111537, 13122
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 17 2017

Keywords

Examples

			Triangle begins:
  1,  2;
  3,  9,  6;
  9, 36, 45, 18;
		

Crossrefs

Columns are: A000244, A288834, A288835, A288836, A288838, etc.
Cf. A287768.

Programs

  • Mathematica
    T[1, 1] = 1; T[1, 2] = 2;
    T[n_, k_] /; 1 <= k <= n+1 := T[n, k] = 3 T[n-1, k-1] + 3 T[n-1, k];
    T[, ] = 0;
    Table[T[n, k], {n, 1, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Nov 16 2018 *)

Formula

T(n+1,k+1) = 3*T(n,k) + 3*T(n,k+1).
Showing 1-7 of 7 results.