cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Enrique Navarrete

Enrique Navarrete's wiki page.

Enrique Navarrete has authored 261 sequences. Here are the ten most recent ones:

A387264 Expansion of e.g.f. exp(x^3/(1-x)^4).

Original entry on oeis.org

1, 0, 0, 6, 96, 1200, 14760, 196560, 2983680, 52315200, 1041465600, 22912243200, 545443113600, 13887294220800, 376188856243200, 10816657377926400, 329526966472704000, 10612556870243328000, 360307460991724646400, 12857257599818926694400, 480829913352068087808000
Offset: 0

Author

Enrique Navarrete, Aug 24 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to seat n people on benches and select 3 people from each bench.
A001805 is the number of ways if only 1 bench is used.

Examples

			a(6)=14760 since there are 14400 ways using one bench and 360 ways with 2 benches of 3 people each.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 4*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 25 2025 *)

Formula

From Vaclav Kotesovec, Aug 25 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 4*k-1)/k!.
a(n) = 5*(n-1)*a(n-1) - 10*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*(10*n-27)*a(n-3) - (n-3)*(n-2)*(n-1)*(5*n-21)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(-27/1280 + 13*2^(-22/5)*n^(1/5)/25 + 13*2^(-19/5)*n^(2/5)/15 - 2^(-6/5)*n^(3/5) + 5*2^(-8/5)*n^(4/5) - n) * n^(n-1/10). (End)

A386514 Expansion of e.g.f. exp(x^2/(1-x)^3).

Original entry on oeis.org

1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0

Author

Enrique Navarrete, Aug 23 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to linearly order n distinguishable objects into one or several lines and then choose 2 objects from each line. If the lines are also linearly ordered see A364524.
A001804(n) is the number of ways if only 1 line is used.

Examples

			a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
		

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

From Vaclav Kotesovec, Aug 24 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 3*k-1) / k!.
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-7)*a(n-2) + (n-2)*(n-1)*(4*n-11)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(1/27 - 3^(-5/4)*n^(1/4)/8 - 3^(-1/2)*n^(1/2)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n-1/8) / 2. (End)

A387185 a(n) = n*2^(n-1) + binomial(n,2)*2^(n-2) + binomial(n,3)*2^(n-3).

Original entry on oeis.org

0, 1, 5, 19, 64, 200, 592, 1680, 4608, 12288, 32000, 81664, 204800, 505856, 1232896, 2969600, 7077888, 16711680, 39124992, 90898432, 209715200, 480772096, 1095761920, 2484076544, 5603590144, 12582912000, 28135391232, 62662901760, 139049566208, 307492814848, 677799526400
Offset: 0

Author

Enrique Navarrete, Aug 21 2025

Keywords

Comments

Number of ternary strings of length n that contain one, two or three 0's.
Number of words of length n defined on five letters that contain one a or 2 b's or 3 c's and any number of d's and e's.

Examples

			a(3) = 19 since the words are (number of permutations in parentheses): add (3), ade (6), aee (3), bbd (3), bbe (3), ccc (1).
a(4) = 64 since from the 81 strings of length 4 we subtract the following 17 (number of permutations in parentheses): 0000 (1), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^(n-k)*Binomial[n, k], {k, 1, 3}]; Array[a, 30, 0] (* Amiram Eldar, Aug 21 2025 *)

Formula

E.g.f.: (1 + x/2 + x^2/6)*x*exp(2*x).
G.f.: x*(1-3*x+3*x^2)/(2*x-1)^4 . - R. J. Mathar, Aug 26 2025
a(n) = n*2^n*(20+3*n+n^2)/48. - R. J. Mathar, Aug 26 2025

A387083 Expansion of e.g.f. (2*(1-x)^2)/(2-4*x+x^2).

Original entry on oeis.org

1, 0, 1, 6, 42, 360, 3690, 44100, 602280, 9253440, 157966200, 2966317200, 60765843600, 1348539192000, 32229405608400, 825285553092000, 22541609025936000, 654175871661312000, 20101465198839024000, 651991603501798560000, 22260385752292527840000
Offset: 0

Author

Enrique Navarrete, Aug 16 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to sit n people around circular tables, choose 2 people from each table, and linear order the tables.

Examples

			a(6)=3690 since for 6 people the number of ways to do the combined tasks in the comment are: 1800 using one table, 1080 using two tables with 4 and 2 people, 720 using two tables with 3 people each, and 90 using three tables with 2 people each.
		

Crossrefs

Cf. A001286.

Programs

  • Mathematica
    With[{m = 20}, CoefficientList[Series[(2*(1 - x)^2)/(2 - 4*x + x^2), {x, 0, m}], x] * Table[n!, {n, 0, m}]] (* Amiram Eldar, Aug 16 2025 *)

Formula

For n > 0, a(n) = ((1 + sqrt(2))^(n-1) - (sqrt(2) - 1)^(n-1)) * n! / 2^(n/2 + 1). - Vaclav Kotesovec, Aug 18 2025
D-finite with recurrence 2*a(n) -4*n*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Aug 26 2025
a(n) = A060995(n)*n!/2^n. - R. J. Mathar, Aug 26 2025

A387012 Number of ternary strings of length 2*n that have fewer 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 4, 48, 496, 4864, 46464, 436992, 4068096, 37601280, 345733120, 3166363648, 28910051328, 263320698880, 2393742770176, 21726260035584, 196938517118976, 1783247797223424, 16132649384411136, 145839570932465664, 1317564543167102976, 11896996193604993024, 107375816824319901696
Offset: 0

Author

Enrique Navarrete, Aug 12 2025

Keywords

Examples

			a(2) = 48 since the strings of length 4 are the following (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 9^n - Sum[2^(n-k) * Binomial[2*n, n-k], {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Aug 16 2025 *)

Formula

a(n) = 9^n - Sum_{k=0..n} 2^(n-k)*binomial(2*n,n-k).
G.f.: (sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)-8*x*(1-9*x))/((1-9*x)*sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)).
a(n) = A001019(n) - A128418(n).
D-finite with recurrence n*a(n) +(-29*n+28)*a(n-1) +12*(23*n-41)*a(n-2) +432*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 26 2025

A386825 Triangle read by rows: T(n,k) = 3^(n-k)*C(2*n,n-k).

Original entry on oeis.org

1, 6, 1, 54, 12, 1, 540, 135, 18, 1, 5670, 1512, 252, 24, 1, 61236, 17010, 3240, 405, 30, 1, 673596, 192456, 40095, 5940, 594, 36, 1, 7505784, 2189187, 486486, 81081, 9828, 819, 42, 1, 84440070, 25019280, 5837832, 1061424, 147420, 15120, 1080, 48, 1, 956987460, 287096238
Offset: 0

Author

Enrique Navarrete, Aug 04 2025

Keywords

Comments

Row sums are A386826.

Examples

			Triangle begins:
        1;
        6,       1;
       54,      12,      1;
      540,     135,     18,     1;
     5670,    1512,    252,    24,    1;
    61236,   17010,   3240,   405,   30,   1;
   673596,  192456,  40095,  5940,  594,  36,  1;
  7505784, 2189187, 486486, 81081, 9828, 819, 42, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^(n-k) Binomial[2n, n-k], {n, 0, 9}, {k, 0, n}]]

Formula

T(n,k) = 3^(n-k)*A094527(n,k).

A386826 a(n) = Sum_{k=0..n} 3^(n-k)*C(2*n,n-k).

Original entry on oeis.org

1, 7, 67, 694, 7459, 81922, 912718, 10273228, 116522275, 1329569290, 15244087642, 175472098996, 2026521318286, 23470106563924, 272476942589884, 3169997065488664, 36948020548661539, 431354994430077274, 5043279137171450914, 59041965004582271524, 692026745415822877594, 8119918150063503715324
Offset: 0

Author

Enrique Navarrete, Aug 04 2025

Keywords

Comments

Row sums of number triangle A386825.
Number of strings of length 2*n defined on {0,1,2,3} that have either the same number or more 0's than the combined number of 1's, 2's and 3's.

Examples

			a(3)=694 counts the strings of length 6 as follows: 540 strings with three 0's, 135 with four 0's, 18 with five 0's, and 1 string with six 0's. Hence 694 = 540 + 135 + 18 + 1, where the summands come from the triangle in A386825.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^(n-k) Binomial[2n, n-k], {k, 0, n}], {n, 0, 21}]

Formula

a(n) = 3^n*binomial(2*n, n)*hypergeom([1, -n], [1+n], -1/3). - Stefano Spezia, Aug 05 2025
a(n) ~ 2^(2*n-1) * 3^(n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 07 2025
D-finite with recurrence n*a(n) +(n+1)*a(n-1) +2*(-946*n+2017)*a(n-2) +144*(286*n-821)*a(n-3) +122112*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Aug 26 2025
D-finite with recurrence n*(2*n-1)*a(n) +2*(-28*n^2+20*n+9)*a(n-1) +96*(2*n+1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 26 2025

A385252 Number of ternary strings of length 2*n that have at least one 0 but less 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 0, 32, 432, 4608, 45440, 432896, 4051712, 37535744, 345470976, 3165315072, 28905857024, 263303921664, 2393675661312, 21725991600128, 196937443377152, 1783243502256128, 16132632204541952, 145839502212988928, 1317564268289196032, 11896995094093365248, 107375812426273390592
Offset: 0

Author

Enrique Navarrete, Jul 28 2025

Keywords

Examples

			a(2)=32 since the strings of length 4 are (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4).
a(3)=432 since the strings of length 6 are (number of permutations in parentheses): 111110 (6), 111120 (30), 111220 (60), 112220 (60), 122220 (30), 222220 (6), 001111 (15), 001112 (60), 001122 (90), 001222 (60), 002222 (15).
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_]:=9^n - 4^n - Sum[2^(n-k)*Binomial[2n,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, Jul 31 2025 *)

Formula

a(n) = 9^n - 4^n - Sum_{k=0..n} 2^(n-k)*C(2*n,n-k) for n > 0.
G.f.: (5*x*(sqrt(1-8*x))*(sqrt(1-8*x)+12*x-1)-8*x*(36*x^2-13*x+1))/(sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)*(36*x^2-13*x+1)) + 1.
a(n) = A001019(n) - A000302(n) - A128418(n), n > 0.
Conjecture D-finite with recurrence n*a(n) +(-37*n+36)*a(n-1) +4*(131*n-245)*a(n-2) +16*(-221*n+605)*a(n-3) +192*(59*n-213)*a(n-4) +6912*(-2*n+9)*a(n-5)=0. - R. J. Mathar, Jul 31 2025
a(n) = 9^n - 4^n - 2^n*binomial(2*n, n)*hypergeom([1, -n], [1+n], -1/2) for n > 0. - Stefano Spezia, Aug 05 2025

A386670 Number of ternary strings of length 2*n that have more 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 1, 9, 73, 577, 4521, 35313, 275577, 2150721, 16793929, 131230609, 1026283545, 8032614625, 62921342953, 493262044977, 3869724080313, 30379987189377, 238661880787593, 1876072096450257, 14756076838714713, 116126703647975457, 914363729294862633, 7203083947383222897
Offset: 0

Author

Enrique Navarrete, Jul 28 2025

Keywords

Examples

			a(1)=1 since the string of length 2 is 00.
a(2)=9 since the strings of length 4 are the 4 permutations of 0001, the 4 permutations of 0002, and 0000.
a(4)=577 since the strings of length 8 are (number of permutations in parentheses): 00000001 (8), 00000002 (8), 00000011 (28), 00000012 (56), 00000022 (28), 00000111 (56), 00000112 (168), 00000122 (168), 00000222 (56), 00000000 (1).
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} 2^(n-k)*binomial(2*n,n-k).
a(n) = Sum_{k=1..n} A128417(n,k).
G.f.: (1-4*x-sqrt(1-8*x))/(sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)).
a(n) = A128418(n) - A059304(n).

A386359 a(n) = (1/4)*(9^n - 2*4^n + 3), n > 0; a(0) = 0.

Original entry on oeis.org

0, 1, 13, 151, 1513, 14251, 130813, 1187551, 10728913, 96724051, 871171813, 7843167751, 70598995513, 635432902651, 5719063896013, 51472246152751, 463252899729313, 4169286834982051, 37523624464511413, 337712791979294551, 3039415815008418313, 27354745083854834251
Offset: 0

Author

Enrique Navarrete, Jul 19 2025

Keywords

Comments

a(n) is the number of ternary strings of length 2*n with an even number of 1's and 2's (possibly zero) and a positive even number of 0's.

Examples

			For n=2, a(2)=13 since the strings of length 4 are (number of permutations in parentheses): 0022 (6), 0011 (6), 0000 (1).
For n=3, a(3)=151 since the strings of length 6 are (number of permutations in parentheses): 000000 (1), 000022 (15), 002222(15), 000011 (15), 001111 (15), 001122 (90).
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 13, 151]; [n le 4 select I[n] else 14*Self(n-1)-49*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
  • Mathematica
    LinearRecurrence[{14,-49,36},{0,1,13,151},23] (* Stefano Spezia, Jul 19 2025 *)

Formula

a(n) = 14*a(n-1) - 49*a(n-2) + 36*a(n-3), n > 3.
G.f.: (18*x^3 - x^2 + x)/((1 - 9*x)*(1 - 4*x)*(1 - x)).
E.g.f.: (1/4)*(exp(9*x) - 2*exp(4*x) + 3*exp(x) - 2).