Enrique Navarrete has authored 261 sequences. Here are the ten most recent ones:
A387264
Expansion of e.g.f. exp(x^3/(1-x)^4).
Original entry on oeis.org
1, 0, 0, 6, 96, 1200, 14760, 196560, 2983680, 52315200, 1041465600, 22912243200, 545443113600, 13887294220800, 376188856243200, 10816657377926400, 329526966472704000, 10612556870243328000, 360307460991724646400, 12857257599818926694400, 480829913352068087808000
Offset: 0
a(6)=14760 since there are 14400 ways using one bench and 360 ways with 2 benches of 3 people each.
-
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 4*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 25 2025 *)
A386514
Expansion of e.g.f. exp(x^2/(1-x)^3).
Original entry on oeis.org
1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0
a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
-
nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
A387185
a(n) = n*2^(n-1) + binomial(n,2)*2^(n-2) + binomial(n,3)*2^(n-3).
Original entry on oeis.org
0, 1, 5, 19, 64, 200, 592, 1680, 4608, 12288, 32000, 81664, 204800, 505856, 1232896, 2969600, 7077888, 16711680, 39124992, 90898432, 209715200, 480772096, 1095761920, 2484076544, 5603590144, 12582912000, 28135391232, 62662901760, 139049566208, 307492814848, 677799526400
Offset: 0
a(3) = 19 since the words are (number of permutations in parentheses): add (3), ade (6), aee (3), bbd (3), bbe (3), ccc (1).
a(4) = 64 since from the 81 strings of length 4 we subtract the following 17 (number of permutations in parentheses): 0000 (1), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
-
a[n_] := Sum[2^(n-k)*Binomial[n, k], {k, 1, 3}]; Array[a, 30, 0] (* Amiram Eldar, Aug 21 2025 *)
A387083
Expansion of e.g.f. (2*(1-x)^2)/(2-4*x+x^2).
Original entry on oeis.org
1, 0, 1, 6, 42, 360, 3690, 44100, 602280, 9253440, 157966200, 2966317200, 60765843600, 1348539192000, 32229405608400, 825285553092000, 22541609025936000, 654175871661312000, 20101465198839024000, 651991603501798560000, 22260385752292527840000
Offset: 0
a(6)=3690 since for 6 people the number of ways to do the combined tasks in the comment are: 1800 using one table, 1080 using two tables with 4 and 2 people, 720 using two tables with 3 people each, and 90 using three tables with 2 people each.
-
With[{m = 20}, CoefficientList[Series[(2*(1 - x)^2)/(2 - 4*x + x^2), {x, 0, m}], x] * Table[n!, {n, 0, m}]] (* Amiram Eldar, Aug 16 2025 *)
A387012
Number of ternary strings of length 2*n that have fewer 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 4, 48, 496, 4864, 46464, 436992, 4068096, 37601280, 345733120, 3166363648, 28910051328, 263320698880, 2393742770176, 21726260035584, 196938517118976, 1783247797223424, 16132649384411136, 145839570932465664, 1317564543167102976, 11896996193604993024, 107375816824319901696
Offset: 0
a(2) = 48 since the strings of length 4 are the following (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
-
a[n_] := 9^n - Sum[2^(n-k) * Binomial[2*n, n-k], {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Aug 16 2025 *)
A386825
Triangle read by rows: T(n,k) = 3^(n-k)*C(2*n,n-k).
Original entry on oeis.org
1, 6, 1, 54, 12, 1, 540, 135, 18, 1, 5670, 1512, 252, 24, 1, 61236, 17010, 3240, 405, 30, 1, 673596, 192456, 40095, 5940, 594, 36, 1, 7505784, 2189187, 486486, 81081, 9828, 819, 42, 1, 84440070, 25019280, 5837832, 1061424, 147420, 15120, 1080, 48, 1, 956987460, 287096238
Offset: 0
Triangle begins:
1;
6, 1;
54, 12, 1;
540, 135, 18, 1;
5670, 1512, 252, 24, 1;
61236, 17010, 3240, 405, 30, 1;
673596, 192456, 40095, 5940, 594, 36, 1;
7505784, 2189187, 486486, 81081, 9828, 819, 42, 1;
...
-
Flatten[Table[3^(n-k) Binomial[2n, n-k], {n, 0, 9}, {k, 0, n}]]
A386826
a(n) = Sum_{k=0..n} 3^(n-k)*C(2*n,n-k).
Original entry on oeis.org
1, 7, 67, 694, 7459, 81922, 912718, 10273228, 116522275, 1329569290, 15244087642, 175472098996, 2026521318286, 23470106563924, 272476942589884, 3169997065488664, 36948020548661539, 431354994430077274, 5043279137171450914, 59041965004582271524, 692026745415822877594, 8119918150063503715324
Offset: 0
a(3)=694 counts the strings of length 6 as follows: 540 strings with three 0's, 135 with four 0's, 18 with five 0's, and 1 string with six 0's. Hence 694 = 540 + 135 + 18 + 1, where the summands come from the triangle in A386825.
-
Table[Sum[3^(n-k) Binomial[2n, n-k], {k, 0, n}], {n, 0, 21}]
A385252
Number of ternary strings of length 2*n that have at least one 0 but less 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 0, 32, 432, 4608, 45440, 432896, 4051712, 37535744, 345470976, 3165315072, 28905857024, 263303921664, 2393675661312, 21725991600128, 196937443377152, 1783243502256128, 16132632204541952, 145839502212988928, 1317564268289196032, 11896995094093365248, 107375812426273390592
Offset: 0
a(2)=32 since the strings of length 4 are (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4).
a(3)=432 since the strings of length 6 are (number of permutations in parentheses): 111110 (6), 111120 (30), 111220 (60), 112220 (60), 122220 (30), 222220 (6), 001111 (15), 001112 (60), 001122 (90), 001222 (60), 002222 (15).
-
a[0]=0; a[n_]:=9^n - 4^n - Sum[2^(n-k)*Binomial[2n,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, Jul 31 2025 *)
A386670
Number of ternary strings of length 2*n that have more 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 1, 9, 73, 577, 4521, 35313, 275577, 2150721, 16793929, 131230609, 1026283545, 8032614625, 62921342953, 493262044977, 3869724080313, 30379987189377, 238661880787593, 1876072096450257, 14756076838714713, 116126703647975457, 914363729294862633, 7203083947383222897
Offset: 0
a(1)=1 since the string of length 2 is 00.
a(2)=9 since the strings of length 4 are the 4 permutations of 0001, the 4 permutations of 0002, and 0000.
a(4)=577 since the strings of length 8 are (number of permutations in parentheses): 00000001 (8), 00000002 (8), 00000011 (28), 00000012 (56), 00000022 (28), 00000111 (56), 00000112 (168), 00000122 (168), 00000222 (56), 00000000 (1).
A386359
a(n) = (1/4)*(9^n - 2*4^n + 3), n > 0; a(0) = 0.
Original entry on oeis.org
0, 1, 13, 151, 1513, 14251, 130813, 1187551, 10728913, 96724051, 871171813, 7843167751, 70598995513, 635432902651, 5719063896013, 51472246152751, 463252899729313, 4169286834982051, 37523624464511413, 337712791979294551, 3039415815008418313, 27354745083854834251
Offset: 0
For n=2, a(2)=13 since the strings of length 4 are (number of permutations in parentheses): 0022 (6), 0011 (6), 0000 (1).
For n=3, a(3)=151 since the strings of length 6 are (number of permutations in parentheses): 000000 (1), 000022 (15), 002222(15), 000011 (15), 001111 (15), 001122 (90).
-
I:=[0, 1, 13, 151]; [n le 4 select I[n] else 14*Self(n-1)-49*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
-
LinearRecurrence[{14,-49,36},{0,1,13,151},23] (* Stefano Spezia, Jul 19 2025 *)
Comments