cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A387012 Number of ternary strings of length 2*n that have fewer 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 4, 48, 496, 4864, 46464, 436992, 4068096, 37601280, 345733120, 3166363648, 28910051328, 263320698880, 2393742770176, 21726260035584, 196938517118976, 1783247797223424, 16132649384411136, 145839570932465664, 1317564543167102976, 11896996193604993024, 107375816824319901696
Offset: 0

Views

Author

Enrique Navarrete, Aug 12 2025

Keywords

Examples

			a(2) = 48 since the strings of length 4 are the following (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 9^n - Sum[2^(n-k) * Binomial[2*n, n-k], {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Aug 16 2025 *)

Formula

a(n) = 9^n - Sum_{k=0..n} 2^(n-k)*binomial(2*n,n-k).
G.f.: (sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)-8*x*(1-9*x))/((1-9*x)*sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)).
a(n) = A001019(n) - A128418(n).
D-finite with recurrence n*a(n) +(-29*n+28)*a(n-1) +12*(23*n-41)*a(n-2) +432*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Showing 1-1 of 1 results.