cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385252 Number of ternary strings of length 2*n that have at least one 0 but less 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 0, 32, 432, 4608, 45440, 432896, 4051712, 37535744, 345470976, 3165315072, 28905857024, 263303921664, 2393675661312, 21725991600128, 196937443377152, 1783243502256128, 16132632204541952, 145839502212988928, 1317564268289196032, 11896995094093365248, 107375812426273390592
Offset: 0

Views

Author

Enrique Navarrete, Jul 28 2025

Keywords

Examples

			a(2)=32 since the strings of length 4 are (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4).
a(3)=432 since the strings of length 6 are (number of permutations in parentheses): 111110 (6), 111120 (30), 111220 (60), 112220 (60), 122220 (30), 222220 (6), 001111 (15), 001112 (60), 001122 (90), 001222 (60), 002222 (15).
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_]:=9^n - 4^n - Sum[2^(n-k)*Binomial[2n,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, Jul 31 2025 *)

Formula

a(n) = 9^n - 4^n - Sum_{k=0..n} 2^(n-k)*C(2*n,n-k) for n > 0.
G.f.: (5*x*(sqrt(1-8*x))*(sqrt(1-8*x)+12*x-1)-8*x*(36*x^2-13*x+1))/(sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)*(36*x^2-13*x+1)) + 1.
a(n) = A001019(n) - A000302(n) - A128418(n), n > 0.
Conjecture D-finite with recurrence n*a(n) +(-37*n+36)*a(n-1) +4*(131*n-245)*a(n-2) +16*(-221*n+605)*a(n-3) +192*(59*n-213)*a(n-4) +6912*(-2*n+9)*a(n-5)=0. - R. J. Mathar, Jul 31 2025
a(n) = 9^n - 4^n - 2^n*binomial(2*n, n)*hypergeom([1, -n], [1+n], -1/2) for n > 0. - Stefano Spezia, Aug 05 2025
Showing 1-1 of 1 results.