cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A185963 Row sums of number triangle A185962.

Original entry on oeis.org

1, 0, -2, -3, 0, 7, 11, 1, -24, -40, -7, 82, 145, 37, -279, -524, -174, 945, 1888, 767, -3185, -6783, -3244, 10676, 24301, 13330, -35567, -86823, -53615, 117672, 309366, 212101, -386224, -1099385, -827997, 1255937, 3896480, 3197152, -4039199, -13773374
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Examples

			G.f. = 1 - 2*x^2 - 3*x^3 + 7*x^5 + 11*x^6 + x^7 - 24*x^8 - 40*x^9 + ...
		

Crossrefs

Cf. A000931.

Programs

  • Maple
    a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], 4/27):
    seq(simplify(a(n)), n=0..39); # Peter Luschny, Nov 03 2017
  • Mathematica
    LinearRecurrence[{2,-3,1},{1,0,-2},50] (* Vincenzo Librandi, Feb 18 2012 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^2/(1-2*x+3*x^2-x^3)) \\ G. C. Greubel, Jul 23 2017

Formula

G.f.: (1-x)^2/(1-2x+3x^2-x^3).
a(n) = Sum_{k=0..n} Sum_{i=0..(2k+2)} C(2k+2,i)*Sum_{j=0..(n-k-i)} C(k+j,j)*C(j,n-k-i-j)*(-1)^(n-k-j).
a(n) = Sum_{k=0..n} binomial(n+2k,3k)*(-1)^k = Sum_{k=0..n} A109955(n,k)*(-1)^k. - Philippe Deléham, Feb 18 2012
a(n) = A000931(-3*n). - Michael Somos, Sep 18 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], 4/27). - Peter Luschny, Nov 03 2017

Extensions

More terms from Philippe Deléham, Feb 07 2012

A185964 Diagonal sums of number triangle A185962.

Original entry on oeis.org

1, -1, 0, -2, 1, 0, 4, 0, 1, -7, -3, -5, 10, 9, 16, -9, -17, -40, -6, 19, 82, 54, 10, -135, -161, -127, 153, 340, 433, 0, -527, -1053, -620, 434, 2013, 2200, 712, -2880, -5267, -4491, 1981, 9635, 13350, 4897, -12392
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Crossrefs

Cf. A185962.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - x + 2*x^3 - x^4), {x, 0, 50}], x] (* G. C. Greubel, Jul 23 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 - x)^2/(1 - x + 2*x^3 - x^4)) \\ G. C. Greubel, Jul 23 2017

Formula

G.f.: (1-x)^2/(1-x+2*x^3-x^4).
a(n) = Sum_{k=0..floor(n/2)} A185962(n-k,k).

Extensions

More terms from Philippe Deléham, Feb 07 2012

A185965 Central coefficients of number triangle A185962.

Original entry on oeis.org

1, -2, 0, 8, -10, -30, 98, 40, -648, 680, 3058, -8712, -6760, 65674, -52710, -348128, 856358, 1011330, -7116754, 3891920, 41214978, -87043088, -143941360, 793389048, -224365750, -4961373872, 8914590594, 19893652520, -89559777800, 540262170, 601349934194, -905363401312, -2693832315240, 10150582469480, 2943320005570, -73015796693016, 89846661676688
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Formula

a(n)=A185962(2n,n); a(n)=sum{i=0..2n+2, C(2n+2,i)*sum{C(n+j,j)*C(j,n-i-j)*(-1)^(n-j)}}.
Conjecture: 15*n*(n-1)*a(n) +10*(2*n-1)*(n-1)*a(n-1) +(109*n^2-263*n+180)*a(n-2) +4*(-2*n^2-10*n+57)*a(n-3) +60*(n-4)^2*a(n-4) -6*(2*n-7)*(n-5)*a(n-5)=0. - R. J. Mathar, Dec 03 2014
Conjecture: 3*n*(n-1)*(57*n-136)*a(n) +(n-1)*(171*n^2-415*n+14)*a(n-1) +2*(532*n^3-2281*n^2+2755*n-840)*a(n-2) -2*(n-3)*(304*n^2-835*n+216)*a(n-3) +2*(19*n-5)*(n-4)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Dec 03 2014

A195350 Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0

Views

Author

Bruno Berselli, Sep 16 2011

Keywords

Comments

Rewrite the Girard-Waring formulae to express the mean powers in terms of the mean symmetric functions of the data values; the results are polynomials in the mean symmetric polynomials, indexed by the power n. Then for 3 data points, the sum of the positive coefficients in the n-th such polynomial is a(n). a(n+1)/a(n) approaches 1/(2^(1/3)-1). See extended comment in A301417. - Gregory Gerard Wojnar, Mar 19 2018

Crossrefs

Cf. A185962 (gives the coefficients of numerator and denominator of the g.f., row 4 and 5 of its triangular array). Sequences likewise related to A185962: A000012 (row 1 and 2), A001333 (row 2 and 3) and A006190 (row 3 and 4).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4)));
    
  • Maple
    [seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
  • Maxima
    makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
    

Formula

G.f.: (1-3*x-x^2)/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4).
a(n) = A301483(n) - A303647(n-2) + A195339(n-4) (conjectured). - Gregory Gerard Wojnar, Apr 27 2018

A195339 Expansion of 1/(1-4*x+2*x^3+x^4).

Original entry on oeis.org

1, 4, 16, 62, 239, 920, 3540, 13620, 52401, 201604, 775636, 2984122, 11480879, 44170640, 169938680, 653808840, 2515413201, 9677604804, 37232862856, 143246816182, 551116641919, 2120323237160, 8157566453420, 31384785713660, 120747379738401
Offset: 0

Views

Author

Bruno Berselli, Sep 16 2011

Keywords

Crossrefs

Cf. A185962 (gives the coefficients of the denominator of the g.f., row 5 of its triangular array). Sequences likewise related to A185962: A000007 (row 1), A000012 (row 2), A000129 (row 3) and A006190 (row 4).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-4*x+2*x^3+x^4)));
    
  • Mathematica
    CoefficientList[Series[1/(1-4x+2x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-2,-1},{1,4,16,62},30] (* Harvey P. Dale, Dec 02 2011 *)
  • Maxima
    makelist(coeff(taylor(1/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 24);
  • PARI
    Vec(1/(1-4*x+2*x^3+x^4)+O(x^25))
    

Formula

G.f.: 1/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1)-2*a(n-3)-a(n-4).

A185966 Series reversion of A028310.

Original entry on oeis.org

1, -1, 0, 2, -2, -5, 14, 5, -72, 68, 278, -726, -520, 4691, -3514, -21758, 50374, 56185, -374566, 194596, 1962618, -3956504, -6258320, 33057877, -8974630, -190822072, 330170022, 710487590, -3088268200, 18008739, 19398384974, -28292606291, -81631282280, 298546543220, 84094857302, -2028216574806, 2428288153424, 9450205225145
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Examples

			1 - x + 2*x^3 - 2*x^4 - 5*x^5 + 14*x^6 + 5*x^7 - 72*x^8 + 68*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[x*(1-x+x^2) /(1-x)^2, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Jan 22 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( serreverse( x * ((1 - x + x^2) / (1 - x)^2 + x * O(x^n))) / x, n))} /* Michael Somos, Apr 05 2012 */
    
  • PARI
    {a(n) = local(B); if( n<0, 0, B = O(x); for( k=0, n, B = (1 - B) * (x + B * (B - x))); polcoeff( B / x, n))} /* Michael Somos, Apr 05 2012 */

Formula

a(n) = A185962(2*n,n)/(n+1) = A185965(n)/(n+1).
Given g.f. A(x) then B(x) = x * A(x) satisfies B(x) = (1 - B(x)) * (x + B(x) * (B(x) - x)). - Michael Somos, Apr 05 2012
Conjecture: 6*n*(n+1)*a(n) -n*(n-14)*a(n-1) +2*n*(14*n-19)*a(n-2) -4*(n-2)*(17*n-48)*a(n-3) +6*(2*n-5)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2012
Recurrence (of order 3): 3*n*(n+1)*(19*n-27)*a(n) = -2*n*(38*n^2 - 73*n + 9)*a(n-1) - 20*(19*n^3 - 65*n^2 + 66*n - 18)*a(n-2) + 2*(n-3)*(2*n-3)*(19*n-8)*a(n-3). - Vaclav Kotesovec, Jan 22 2014
Lim sup n->infinity |a(n)|^(1/n) = sqrt(20/9 + 1/27*(272376 - 12312 * sqrt(57))^(1/3) + 2/9*(1261 + 57 * sqrt(57))^(1/3)) = 2.637962913244886521522... - Vaclav Kotesovec, Jan 22 2014

A185967 Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Comments

Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.

Examples

			Triangle begins
  1,
  1, 1,
  3, 2, 1,
  10, 7, 3, 1,
  37, 26, 12, 4, 1,
  146, 103, 49, 18, 5, 1,
  602, 426, 207, 80, 25, 6, 1,
  2563, 1818, 897, 359, 120, 33, 7, 1,
  11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,
  49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,
  224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Production matrix is
  1, 1,
  2, 1, 1,
  3, 2, 1, 1,
  4, 3, 2, 1, 1,
  5, 4, 3, 2, 1, 1,
  6, 5, 4, 3, 2, 1, 1,
  7, 6, 5, 4, 3, 2, 1, 1,
  8, 7, 6, 5, 4, 3, 2, 1, 1,
  9, 8, 7, 6, 5, 4, 3, 2, 1, 1
  10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
		

Crossrefs

Inverse of number triangle A185962.
First column is A109081. Row sums are A106228(n+1).

Programs

  • Maple
    T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):
    seq(seq(simplify(T(n, k)), k=0..n),n=0..10); # Peter Luschny, Apr 02 2019
  • Mathematica
    T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*sum(binomial(n+1,i)*binomial(n-k+i-1,n-k-i),i,0,n-k); /* Vladimir Kruchinin, Apr 02 2019 */

Formula

T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019
Showing 1-7 of 7 results.