cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195350 Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0

Views

Author

Bruno Berselli, Sep 16 2011

Keywords

Comments

Rewrite the Girard-Waring formulae to express the mean powers in terms of the mean symmetric functions of the data values; the results are polynomials in the mean symmetric polynomials, indexed by the power n. Then for 3 data points, the sum of the positive coefficients in the n-th such polynomial is a(n). a(n+1)/a(n) approaches 1/(2^(1/3)-1). See extended comment in A301417. - Gregory Gerard Wojnar, Mar 19 2018

Crossrefs

Cf. A185962 (gives the coefficients of numerator and denominator of the g.f., row 4 and 5 of its triangular array). Sequences likewise related to A185962: A000012 (row 1 and 2), A001333 (row 2 and 3) and A006190 (row 3 and 4).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4)));
    
  • Maple
    [seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
  • Maxima
    makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
    

Formula

G.f.: (1-3*x-x^2)/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4).
a(n) = A301483(n) - A303647(n-2) + A195339(n-4) (conjectured). - Gregory Gerard Wojnar, Apr 27 2018

A185962 Riordan array ((1-x)^2/(1-x+x^2), x(1-x)^2/(1-x+x^2)).

Original entry on oeis.org

1, -1, 1, -1, -2, 1, 0, -1, -3, 1, 1, 2, 0, -4, 1, 1, 3, 5, 2, -5, 1, 0, 0, 3, 8, 5, -6, 1, -1, -4, -6, -1, 10, 9, -7, 1, -1, -4, -10, -16, -10, 10, 14, -8, 1, 0, 1, 0, -10, -26, -24, 7, 20, -9, 1, 1, 6, 15, 20, 5, -30, -42, 0, 27, -10, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Comments

Riordan array (g(x),xg(x)) where g(x)=(1-x)(1-x^2)(1-x^3)/(1-x^6).
Inverse is A185967. Row sums are A185963.
Diagonal sums are A185964. Central coefficients are A185965.
Subtriangle of the triangle given by (0, -1, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012

Examples

			Triangle begins:
   1;
  -1,  1;
  -1, -2,   1;
   0, -1,  -3,   1;
   1,  2,   0,  -4,   1;
   1,  3,   5,   2,  -5,   1;
   0,  0,   3,   8,   5,  -6,   1;
  -1, -4,  -6,  -1,  10,   9,  -7,  1;
  -1, -4, -10, -16, -10,  10,  14, -8,  1;
   0,  1,   0, -10, -26, -24,   7, 20, -9,   1;
   1,  6,  15,  20,   5, -30, -42,  0, 27, -10, 1;
  ...
From _Philippe Deléham_, Mar 19 2012: (Start)
(0, -1, 2, -1/2, 1/2, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0, -1,  1;
  0, -1, -2,  1;
  0,  0, -1, -3,  1;
  0,  1,  2,  0, -4,  1;
  0,  1,  3,  5,  2, -5,  1;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - y*x + x/(1 - x)^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Jul 23 2017 *)

Formula

T(n,k) = Sum_{i=0..(2*k+2)} C(2*k+2,i)*Sum_{j=0..(n-k-i)} C(k+j,j)*C(j,n-k-i-j)*(-1)^(n-k-j).
G.f.: 1/(1-y*x+x/(1-x)^2). - Philippe Deléham, Feb 07 2012
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = -1, T(2,1) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham , Nov 11 2013

A301483 a(n) = floor(a(n-1)/(2^(1/3)-1)) with a(1)=1.

Original entry on oeis.org

1, 3, 11, 42, 161, 619, 2381, 9160, 35241, 135583, 521631, 2006882, 7721121, 29705639, 114287161, 439699520, 1691665681, 6508382763, 25039844851, 96336348522, 370636962881, 1425959779059, 5486126574341, 21106896023080, 81205027571321, 312421897357543
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 22 2018

Keywords

Comments

a(n+1)/a(n) approaches 1/(2^(1/3)-1).

Crossrefs

Cf. A024537, A195350 (also has 1/(2^(1/3)-1) ratio), A303647.

Programs

  • Magma
    [n le 1 select 1 else Floor(Self(n-1)/(2^(1/3)-1)): n in [1..30]]; // Vincenzo Librandi, Apr 04 2018
  • Maple
    a:=proc(n) option remember;
       if n<1 then 0  else if n=1 then 1 else floor(a(n-1)/(2^(1/3)-1))
    end if end if end proc:
    seq(a(n), n=1..25);
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==Floor[a[n-1]/(2^(1/3)-1)]}, a, {n, 30}] (* Vincenzo Librandi, Apr 04 2018 *)
  • PARI
    a=vector(50); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(2^(1/3)-1)); a \\ Altug Alkan, Mar 22 2018
    

Formula

Conjectures from Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 - x - x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A195350(n) + A303647(n-2) - A195339(n-4) (conjectured).

A303647 a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1.

Original entry on oeis.org

1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665
Offset: 1

Views

Author

Gregory Gerard Wojnar, Apr 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
           if n<1 then 0 else
           if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)
         end if end if end proc;
    seq(a(n), n=0..10);
  • Mathematica
    Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *)
    Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *)
  • PARI
    a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018

Formula

a(n) = A301483(n+2) - A195350(n+2) + A195339(n-2) (conjectured).
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(1 + x + x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
Showing 1-4 of 4 results.