cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Richard Choulet

Richard Choulet's wiki page.

Richard Choulet has authored 270 sequences. Here are the ten most recent ones:

A185106 Column 4 of A181783.

Original entry on oeis.org

1, 7, 63, 709, 9709, 157971, 2993467, 64976353, 1593358809, 43632348319, 1321213523191, 43869502390077, 1585770335098693, 62013234471100459, 2609265444024424179, 117558236422872707161, 5647316731308685308337, 288166881285968665526583, 15566545814457889774570159, 887503412305357492886020789
Offset: 0

Author

Richard Choulet, Dec 26 2012

Keywords

Comments

A181783 is written as follows:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, ...
1, 1, 65, 1201, 9709, ...
A000522 and A053482 are respectively the columns number 2 and 3 of this array. Our sequence gives the column number 4 (the fifth).

Crossrefs

Programs

  • Maple
    a(0,1):=1:for p from 2 to 15 do for n from 0 to 20 do a(n,0):=1 :a(n,p):=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n):od:seq(a(n,p),n=0..20):od;
  • Mathematica
    CoefficientList[Series[E^x/((1-x)*(1-2x)*(1-3x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)/((1-x)*(1-2*x)*(1-3*x)))) \\ G. C. Greubel, Jun 22 2017

Formula

Recurrence relation: a(n)= 6*n*a(n-1) -11*n*(n-1)*a(n-2) +6*n*(n-1)*(n-2)*a(n-3) +1 (or following A053482 for a linear homogeneous recurrence) a(n)= (6n+1)*a(n-1) -(11n+6)*(n-1)*a(n-2) +(6n+11)*(n-1)*(n-2)*a(n-3) -6*(n-1)*(n-2)*(n-3)*a(n-4).
E.g.f: exp(z)/((1-z)*(1-2*z)*(1-3*z)), as explained in A181783.
With p=4, a(n)=a(n,p)=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n)
a(n) ~ n! * exp(1/3)*3^(n+2)/2. - Vaclav Kotesovec, Oct 02 2013

A181783 Array described in comments to A053482, here read by increasing antidiagonals. See comments below.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0

Author

Richard Choulet, Dec 23 2012

Keywords

Comments

We denote by a(n,k) the number in row number n >= 0 and column number k >= 0. The recurrence which defines the array is a(n,k) = n*(k-1)*a(n-1,k) + a(n,k-1). The initial values are given by a(n,0) = 1 = a(0,k) for all n >= 0 and k >= 0.

Examples

			Array read row after row:
  1, 1,    1,      1,       1,        1,         1, ...
  1, 1,    2,      4,       7,       11,        16, ...
  1, 1,    5,     21,      63,      151,       311, ...
  1, 1,   16,    142,     709,     2521,      7186, ...
  1, 1,   65,   1201,    9709,    50045,    193765, ...
  1, 1,  326,  12336,  157971,  1158871,   6002996, ...
  1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
  ...
A(4,3) = 1201.
		

Crossrefs

Programs

  • Maple
    A181783 := proc(n,k)
        option remember;
        if n =0 or k = 0 then
            1;
        else
            n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
        end if;
    end proc:
    seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Mar 02 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
    Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)

Formula

If we consider the e.g.f. Psi(k) of column number k we have: Psi(k)(z) = Psi(k-1)(z)/(1-(k-1)*z) with Psi(1)(z) = exp(z). Then Psi(k)(z) = exp(z)/Product_{j=0..k-1} (1 - j*z). We conclude that a(n,k) = n!*Sum_{m=0..n} Sum_{j=1..k-1} (-1)^(k-1-j)*j^(m+k-2)/((n-m)!*(j-1)!*(k-1-j)!). It seems after the recurrence (and its proof) in A053482 that:
A(n,k) = -Sum_{j=1..k-1} s1(k,k-j)*n*(n-1)*...*(n-k+1)*a(n-j,k) + 1 where s1(m,n) are the classical Stirling numbers of the first kind.
A(n,1) = 1 for every n.
A(1,k) = 1 + k*(k-1)/2 for every k.
A(n, k+1) = A371898(n+k, k) * n! / ((n+k)! * k!). - Werner Schulte, Apr 14 2024

Extensions

Edited by N. J. A. Sloane, Dec 24 2012

A159035 a(0)=1=a(1), a(2)=2, a(3)=5; thereafter a(n+3)=4*a(n+2)-4*a(n+1)+2*a(n) for n>=1.

Original entry on oeis.org

1, 1, 2, 5, 14, 40, 114, 324, 920, 2612, 7416, 21056, 59784, 169744, 481952, 1368400, 3885280, 11031424, 31321376, 88930368, 252498816, 716916544, 2035531648, 5779458048, 16409538688, 46591385856, 132286304768, 375598753024
Offset: 0

Author

Richard Choulet, Apr 03 2009

Keywords

Comments

A117189 prefixed by an initial 1; essentially a duplicate. - N. J. A. Sloane and R. J. Mathar, Apr 07 2009

Formula

G.f.: f(z)=((1-3*z+2*z^2-z^3)/(1-4*z+4*z^2-2*z^3))

A174837 Sequence built as it follows in comments.

Original entry on oeis.org

9, 2, 45, 2, 11, 2, 225, 2, 11, 2, 56, 2, 11, 2, 1125, 2, 11, 2, 56, 2, 11, 281, 2, 11, 2, 56, 2, 11, 2, 5625
Offset: 0

Author

Richard Choulet, Mar 30 2010

Keywords

Comments

If we denote "A" the finite sequence between a(2^(n-1)-2) and a(2^n-2), the subsequence of a between
a(2^(n)-2) and a(2^(n+1)-2) is given by: " A - a(3*2^(n-1)-2) - A" for every n>=2.

Examples

			a(4)=a(2*3-2)=(9*4-1)/4=11. a(14)=a(2^4-2)==9*5^3=125*9=1125.
Between a(2) and a(6) the subsequence is "2, 11, 2"; then between a(6) and a(14) the subsequence of a is:
"2, 11, 2, a(10)=56, 2, 11, 2".
It seems that this new sequence gives the number of 2 in the sets of 2 of the sequence A174835.
		

Crossrefs

Cf. A174835.

Formula

a(2n+1)=2. a(2^(n+1)-2)=9*5^n. a(3*2^n-2)=(9*5^n-1)/4.

A176753 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=-2.

Original entry on oeis.org

1, 1, 0, -1, -4, -12, -34, -93, -248, -644, -1622, -3932, -9054, -19314, -36066, -48953, 8372, 415848, 2180870, 8609676, 29858358, 95443242, 286747530, 815867808, 2199049782, 5577559986, 13083598882, 27240793594, 44583397354
Offset: 0

Author

Richard Choulet, Apr 25 2010

Keywords

Examples

			a(2)=2*1*1-2=0. a(3)=1-2=-1. a(4)=2*1*(-1)-2=-4.
		

Crossrefs

Cf. A176752.

Programs

  • Maple
    l:=-2: : k := 0 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(1-3*n)*a(n-1) +(9*n-13)*a(n-2) +2*(2*n-9)*a(n-3) +8*(4-n)*a(n-4)=0. - R. J. Mathar, Jul 24 2012

A176755 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=-2.

Original entry on oeis.org

1, 3, 4, 15, 52, 208, 846, 3579, 15456, 68096, 304570, 1379980, 6319978, 29211278, 136086710, 638364319, 3012609980, 14293438828, 68139158918, 326218902372, 1567802352910, 7561126873098, 36581288824402, 177496766695528
Offset: 0

Author

Richard Choulet, Apr 25 2010

Keywords

Examples

			a(2)=2*1*3-2=4. a(3)=2*1*4+3^2-2=15. a(4)=2*1*15+2*3*4-2=52.
		

Crossrefs

Cf. A176654.

Programs

  • Maple
    l:=-2: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(1-3*n)*a(n-1) +(n+3)*a(n-2) +2*(10*n-33)*a(n-3) +16*(4-n)*a(n-4) =0. - R. J. Mathar, Jul 24 2012

A177126 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=1.

Original entry on oeis.org

1, 10, 23, 150, 765, 5065, 32337, 223672, 1556583, 11178843, 81228819, 599868763, 4475307567, 33731219901, 256268778463, 1961208117130, 15101975890677, 116936866669157, 909887821312929, 7110983852617913, 55793178281433653
Offset: 0

Author

Richard Choulet, May 03 2010

Keywords

Examples

			a(2)=2*10+2+1=23. a(3)=2*1*23+2+10^2+1+1=150.
		

Crossrefs

Cf. A177125.

Programs

  • Maple
    l:=1: : k := 1 : m :=10: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1).
Conjecture: n*(n+1)*a(n) -n*(7*n-2)*a(n-1) -3*n*(7*n-17)*a(n-2) +n*(83*n-250)*a(n-3) -84*n*(n-4)*a(n-4) +28*n*(n-5)*a(n-5) =0. - R. J. Mathar, Jul 24 2012

A177131 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=0 and l=1.

Original entry on oeis.org

1, 10, 21, 143, 707, 4716, 29579, 203622, 1399099, 9961582, 71585287, 523465627, 3864076389, 28826865756, 216722056701, 1641392860951, 12507535829603, 95839985593950, 737953189846751, 5707113130311621, 44310704176742745
Offset: 0

Author

Richard Choulet, May 03 2010

Keywords

Examples

			a(2)=2*1*10+1=21. a(3)=2*1*21+100+1=143.
		

Crossrefs

Cf. A177130.

Programs

  • Maple
    l:=1: : k := 0 : m :=10: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-27*n+59)*a(n-2) +64*(n-3)*a(n-3) +32*(-n+4)*a(n-4)=0. - R. J. Mathar, Jul 24 2012

A177175 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=1 and l=-1.

Original entry on oeis.org

1, 6, 13, 64, 287, 1515, 8143, 46030, 265909, 1572193, 9443997, 57529101, 354394057, 2204333079, 13823770729, 87311462772, 554904606279, 3546103422655, 22772157825695, 146876986425311, 951065019090195
Offset: 0

Author

Richard Choulet, May 04 2010

Keywords

Examples

			a(2)=2*1*6+2-1=13. a(3)=2*1*13+36+2+1-1=64.
		

Crossrefs

Cf. A176832.

Programs

  • Maple
    l:=-1: : k := 1 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(2-7*n)*a(n-1) +(19-5*n)*a(n-2) +(43*n-134)*a(n-3) +4*(53-13*n)*a(n-4) +20*(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012

A177180 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=-1.

Original entry on oeis.org

1, 10, 21, 144, 711, 4747, 29767, 205078, 1409645, 10043729, 72216773, 528438373, 3903255409, 29138576719, 219209569841, 1661343858524, 12668020020047, 97135000445375, 748428139988567, 5792032911677831, 45000447097568843
Offset: 0

Author

Richard Choulet, May 04 2010

Keywords

Crossrefs

Cf. A177179.

Programs

  • Maple
    l:=-1: : k := 1 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,30);seq(d(n),n=0..30): od;

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(2-7*n)*a(n-1) +3*(17-7*n)*a(n-2) +(91*n-278)*a(n-3) +4*(101-25*n)*a(n-4) +36*(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012