Richard Choulet has authored 270 sequences. Here are the ten most recent ones:
Original entry on oeis.org
1, 7, 63, 709, 9709, 157971, 2993467, 64976353, 1593358809, 43632348319, 1321213523191, 43869502390077, 1585770335098693, 62013234471100459, 2609265444024424179, 117558236422872707161, 5647316731308685308337, 288166881285968665526583, 15566545814457889774570159, 887503412305357492886020789
Offset: 0
-
a(0,1):=1:for p from 2 to 15 do for n from 0 to 20 do a(n,0):=1 :a(n,p):=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n):od:seq(a(n,p),n=0..20):od;
-
CoefficientList[Series[E^x/((1-x)*(1-2x)*(1-3x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
-
x='x+O('x^50); Vec(serlaplace(exp(x)/((1-x)*(1-2*x)*(1-3*x)))) \\ G. C. Greubel, Jun 22 2017
A181783
Array described in comments to A053482, here read by increasing antidiagonals. See comments below.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0
Array read row after row:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, 7186, ...
1, 1, 65, 1201, 9709, 50045, 193765, ...
1, 1, 326, 12336, 157971, 1158871, 6002996, ...
1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
...
A(4,3) = 1201.
-
A181783 := proc(n,k)
option remember;
if n =0 or k = 0 then
1;
else
n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
end if;
end proc:
seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Mar 02 2016
-
T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)
A159035
a(0)=1=a(1), a(2)=2, a(3)=5; thereafter a(n+3)=4*a(n+2)-4*a(n+1)+2*a(n) for n>=1.
Original entry on oeis.org
1, 1, 2, 5, 14, 40, 114, 324, 920, 2612, 7416, 21056, 59784, 169744, 481952, 1368400, 3885280, 11031424, 31321376, 88930368, 252498816, 716916544, 2035531648, 5779458048, 16409538688, 46591385856, 132286304768, 375598753024
Offset: 0
A174837
Sequence built as it follows in comments.
Original entry on oeis.org
9, 2, 45, 2, 11, 2, 225, 2, 11, 2, 56, 2, 11, 2, 1125, 2, 11, 2, 56, 2, 11, 281, 2, 11, 2, 56, 2, 11, 2, 5625
Offset: 0
a(4)=a(2*3-2)=(9*4-1)/4=11. a(14)=a(2^4-2)==9*5^3=125*9=1125.
Between a(2) and a(6) the subsequence is "2, 11, 2"; then between a(6) and a(14) the subsequence of a is:
"2, 11, 2, a(10)=56, 2, 11, 2".
It seems that this new sequence gives the number of 2 in the sets of 2 of the sequence A174835.
A176753
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=-2.
Original entry on oeis.org
1, 1, 0, -1, -4, -12, -34, -93, -248, -644, -1622, -3932, -9054, -19314, -36066, -48953, 8372, 415848, 2180870, 8609676, 29858358, 95443242, 286747530, 815867808, 2199049782, 5577559986, 13083598882, 27240793594, 44583397354
Offset: 0
a(2)=2*1*1-2=0. a(3)=1-2=-1. a(4)=2*1*(-1)-2=-4.
-
l:=-2: : k := 0 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
A176755
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=-2.
Original entry on oeis.org
1, 3, 4, 15, 52, 208, 846, 3579, 15456, 68096, 304570, 1379980, 6319978, 29211278, 136086710, 638364319, 3012609980, 14293438828, 68139158918, 326218902372, 1567802352910, 7561126873098, 36581288824402, 177496766695528
Offset: 0
a(2)=2*1*3-2=4. a(3)=2*1*4+3^2-2=15. a(4)=2*1*15+2*3*4-2=52.
-
l:=-2: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
A177126
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=1.
Original entry on oeis.org
1, 10, 23, 150, 765, 5065, 32337, 223672, 1556583, 11178843, 81228819, 599868763, 4475307567, 33731219901, 256268778463, 1961208117130, 15101975890677, 116936866669157, 909887821312929, 7110983852617913, 55793178281433653
Offset: 0
a(2)=2*10+2+1=23. a(3)=2*1*23+2+10^2+1+1=150.
-
l:=1: : k := 1 : m :=10: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);
A177131
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=0 and l=1.
Original entry on oeis.org
1, 10, 21, 143, 707, 4716, 29579, 203622, 1399099, 9961582, 71585287, 523465627, 3864076389, 28826865756, 216722056701, 1641392860951, 12507535829603, 95839985593950, 737953189846751, 5707113130311621, 44310704176742745
Offset: 0
a(2)=2*1*10+1=21. a(3)=2*1*21+100+1=143.
-
l:=1: : k := 0 : m :=10: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);
A177175
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=1 and l=-1.
Original entry on oeis.org
1, 6, 13, 64, 287, 1515, 8143, 46030, 265909, 1572193, 9443997, 57529101, 354394057, 2204333079, 13823770729, 87311462772, 554904606279, 3546103422655, 22772157825695, 146876986425311, 951065019090195
Offset: 0
a(2)=2*1*6+2-1=13. a(3)=2*1*13+36+2+1-1=64.
-
l:=-1: : k := 1 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
A177180
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=-1.
Original entry on oeis.org
1, 10, 21, 144, 711, 4747, 29767, 205078, 1409645, 10043729, 72216773, 528438373, 3903255409, 29138576719, 219209569841, 1661343858524, 12668020020047, 97135000445375, 748428139988567, 5792032911677831, 45000447097568843
Offset: 0
-
l:=-1: : k := 1 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,30);seq(d(n),n=0..30): od;
Comments