cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A181783 Array described in comments to A053482, here read by increasing antidiagonals. See comments below.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0

Views

Author

Richard Choulet, Dec 23 2012

Keywords

Comments

We denote by a(n,k) the number in row number n >= 0 and column number k >= 0. The recurrence which defines the array is a(n,k) = n*(k-1)*a(n-1,k) + a(n,k-1). The initial values are given by a(n,0) = 1 = a(0,k) for all n >= 0 and k >= 0.

Examples

			Array read row after row:
  1, 1,    1,      1,       1,        1,         1, ...
  1, 1,    2,      4,       7,       11,        16, ...
  1, 1,    5,     21,      63,      151,       311, ...
  1, 1,   16,    142,     709,     2521,      7186, ...
  1, 1,   65,   1201,    9709,    50045,    193765, ...
  1, 1,  326,  12336,  157971,  1158871,   6002996, ...
  1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
  ...
A(4,3) = 1201.
		

Crossrefs

Programs

  • Maple
    A181783 := proc(n,k)
        option remember;
        if n =0 or k = 0 then
            1;
        else
            n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
        end if;
    end proc:
    seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Mar 02 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
    Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)

Formula

If we consider the e.g.f. Psi(k) of column number k we have: Psi(k)(z) = Psi(k-1)(z)/(1-(k-1)*z) with Psi(1)(z) = exp(z). Then Psi(k)(z) = exp(z)/Product_{j=0..k-1} (1 - j*z). We conclude that a(n,k) = n!*Sum_{m=0..n} Sum_{j=1..k-1} (-1)^(k-1-j)*j^(m+k-2)/((n-m)!*(j-1)!*(k-1-j)!). It seems after the recurrence (and its proof) in A053482 that:
A(n,k) = -Sum_{j=1..k-1} s1(k,k-j)*n*(n-1)*...*(n-k+1)*a(n-j,k) + 1 where s1(m,n) are the classical Stirling numbers of the first kind.
A(n,1) = 1 for every n.
A(1,k) = 1 + k*(k-1)/2 for every k.
A(n, k+1) = A371898(n+k, k) * n! / ((n+k)! * k!). - Werner Schulte, Apr 14 2024

Extensions

Edited by N. J. A. Sloane, Dec 24 2012
Showing 1-1 of 1 results.