cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185106 Column 4 of A181783.

Original entry on oeis.org

1, 7, 63, 709, 9709, 157971, 2993467, 64976353, 1593358809, 43632348319, 1321213523191, 43869502390077, 1585770335098693, 62013234471100459, 2609265444024424179, 117558236422872707161, 5647316731308685308337, 288166881285968665526583, 15566545814457889774570159, 887503412305357492886020789
Offset: 0

Views

Author

Richard Choulet, Dec 26 2012

Keywords

Comments

A181783 is written as follows:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, ...
1, 1, 65, 1201, 9709, ...
A000522 and A053482 are respectively the columns number 2 and 3 of this array. Our sequence gives the column number 4 (the fifth).

Crossrefs

Programs

  • Maple
    a(0,1):=1:for p from 2 to 15 do for n from 0 to 20 do a(n,0):=1 :a(n,p):=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n):od:seq(a(n,p),n=0..20):od;
  • Mathematica
    CoefficientList[Series[E^x/((1-x)*(1-2x)*(1-3x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)/((1-x)*(1-2*x)*(1-3*x)))) \\ G. C. Greubel, Jun 22 2017

Formula

Recurrence relation: a(n)= 6*n*a(n-1) -11*n*(n-1)*a(n-2) +6*n*(n-1)*(n-2)*a(n-3) +1 (or following A053482 for a linear homogeneous recurrence) a(n)= (6n+1)*a(n-1) -(11n+6)*(n-1)*a(n-2) +(6n+11)*(n-1)*(n-2)*a(n-3) -6*(n-1)*(n-2)*(n-3)*a(n-4).
E.g.f: exp(z)/((1-z)*(1-2*z)*(1-3*z)), as explained in A181783.
With p=4, a(n)=a(n,p)=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n)
a(n) ~ n! * exp(1/3)*3^(n+2)/2. - Vaclav Kotesovec, Oct 02 2013

A053482 Binomial transform of A029767.

Original entry on oeis.org

1, 4, 21, 142, 1201, 12336, 149989, 2113546, 33926337, 611660476, 12243073621, 269456124774, 6468249055921, 168191402251432, 4709596238204901, 141291441773619106, 4521383010795364609, 153727989225714801396, 5534225015581836134677
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

This is the column k=3 of an array T(n,k) = A181783(n,k) defined by T(n,0)=T(0,k)=1 and T(n,k) = n*(k-1)*T(n-1,k) +T(n,k-1), which starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46,...
1, 1, 5, 21, 63, 151, 311, 575, 981,1573,2401,...
1, 1, 16, 142, 709,2521,7186,17536,38137,75889,140716,...
1, 1, 65,1201,9709,50045,193765,614629,1682465,4110913,9176689,...
Column k=2 is A000522. The e.g.f. for column k is E_k(z) = E_(k-1)(z)/[1-(k-1)] = exp(z)/prod_{j=1..k-1} (1-j*z). - Richard Choulet, Dec 17 2012

Programs

  • Mathematica
    CoefficientList[Series[E^x/(1-3*x+2*x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)

Formula

E.g.f.: exp(x)*(2/(1-2x)-1/(1-x))=exp(x)/(1-3x+2x^2); a(n)=sum{k=0..n, C(n,k)*k!*(2^(k+1)-1)}; a(n)=n!*sum{k=0..n, (2^(n-k+1)-1)/k!}; a(n)=int(x^n*(exp((1-x)/2)-exp(1-x)),x,1,infty); a(n)=2*A010844(n)-A000522(n); - Paul Barry, Jan 28 2008
Conjecture: a(n) -(3*n+1)*a(n-1) +(2*n+3)*(n-1)*a(n-2) -2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 29 2012
a(n) = 3*n*a(n-2)-2*n*(n-1)*a(n-2)+1, derived from the array defined in the comment, which proves the previous conjecture. - Richard Choulet, Dec 17 2012
a(n) ~ n! * 2^(n+1)*exp(1/2). - Vaclav Kotesovec, Oct 02 2013

A371766 Triangle read by rows: T(n, k) = A371898(n, k) / A371767(n, k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 16, 21, 7, 1, 1, 65, 142, 63, 11, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,     1;
  [2] 1,     2,      1;
  [3] 1,     5,      4,      1;
  [4] 1,    16,     21,      7,     1;
  [5] 1,    65,    142,     63,    11,    1;
  [6] 1,   326,   1201,    709,   151,   16,   1;
  [7] 1,  1957,  12336,   9709,  2521,  311,  22,  1;
  [8] 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1;
		

Crossrefs

Antidiagonally read subtriangle of A181783.

Programs

  • Maple
    A371766 := (n, k) -> local j; add((-1)^(k-j)*binomial(k, j)*hypergeom([1, -n],
    [], -j), j = 0..k)/((k! * n!)/(n - k)!):
    seq(print(seq(simplify(A371766(n, k)), k = 0..n)), n = 0..8);
Showing 1-3 of 3 results.