cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181783 Array described in comments to A053482, here read by increasing antidiagonals. See comments below.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0

Views

Author

Richard Choulet, Dec 23 2012

Keywords

Comments

We denote by a(n,k) the number in row number n >= 0 and column number k >= 0. The recurrence which defines the array is a(n,k) = n*(k-1)*a(n-1,k) + a(n,k-1). The initial values are given by a(n,0) = 1 = a(0,k) for all n >= 0 and k >= 0.

Examples

			Array read row after row:
  1, 1,    1,      1,       1,        1,         1, ...
  1, 1,    2,      4,       7,       11,        16, ...
  1, 1,    5,     21,      63,      151,       311, ...
  1, 1,   16,    142,     709,     2521,      7186, ...
  1, 1,   65,   1201,    9709,    50045,    193765, ...
  1, 1,  326,  12336,  157971,  1158871,   6002996, ...
  1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
  ...
A(4,3) = 1201.
		

Crossrefs

Programs

  • Maple
    A181783 := proc(n,k)
        option remember;
        if n =0 or k = 0 then
            1;
        else
            n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
        end if;
    end proc:
    seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Mar 02 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
    Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)

Formula

If we consider the e.g.f. Psi(k) of column number k we have: Psi(k)(z) = Psi(k-1)(z)/(1-(k-1)*z) with Psi(1)(z) = exp(z). Then Psi(k)(z) = exp(z)/Product_{j=0..k-1} (1 - j*z). We conclude that a(n,k) = n!*Sum_{m=0..n} Sum_{j=1..k-1} (-1)^(k-1-j)*j^(m+k-2)/((n-m)!*(j-1)!*(k-1-j)!). It seems after the recurrence (and its proof) in A053482 that:
A(n,k) = -Sum_{j=1..k-1} s1(k,k-j)*n*(n-1)*...*(n-k+1)*a(n-j,k) + 1 where s1(m,n) are the classical Stirling numbers of the first kind.
A(n,1) = 1 for every n.
A(1,k) = 1 + k*(k-1)/2 for every k.
A(n, k+1) = A371898(n+k, k) * n! / ((n+k)! * k!). - Werner Schulte, Apr 14 2024

Extensions

Edited by N. J. A. Sloane, Dec 24 2012

A185106 Column 4 of A181783.

Original entry on oeis.org

1, 7, 63, 709, 9709, 157971, 2993467, 64976353, 1593358809, 43632348319, 1321213523191, 43869502390077, 1585770335098693, 62013234471100459, 2609265444024424179, 117558236422872707161, 5647316731308685308337, 288166881285968665526583, 15566545814457889774570159, 887503412305357492886020789
Offset: 0

Views

Author

Richard Choulet, Dec 26 2012

Keywords

Comments

A181783 is written as follows:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, ...
1, 1, 65, 1201, 9709, ...
A000522 and A053482 are respectively the columns number 2 and 3 of this array. Our sequence gives the column number 4 (the fifth).

Crossrefs

Programs

  • Maple
    a(0,1):=1:for p from 2 to 15 do for n from 0 to 20 do a(n,0):=1 :a(n,p):=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n):od:seq(a(n,p),n=0..20):od;
  • Mathematica
    CoefficientList[Series[E^x/((1-x)*(1-2x)*(1-3x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)/((1-x)*(1-2*x)*(1-3*x)))) \\ G. C. Greubel, Jun 22 2017

Formula

Recurrence relation: a(n)= 6*n*a(n-1) -11*n*(n-1)*a(n-2) +6*n*(n-1)*(n-2)*a(n-3) +1 (or following A053482 for a linear homogeneous recurrence) a(n)= (6n+1)*a(n-1) -(11n+6)*(n-1)*a(n-2) +(6n+11)*(n-1)*(n-2)*a(n-3) -6*(n-1)*(n-2)*(n-3)*a(n-4).
E.g.f: exp(z)/((1-z)*(1-2*z)*(1-3*z)), as explained in A181783.
With p=4, a(n)=a(n,p)=n!*sum('1/(n-m)!*sum('k^(p-2)*(-1)^(p-1-k)*k^m/((k-1)!*(p-1-k)!)','k'=1..(p-1))','m'=0..n)
a(n) ~ n! * exp(1/3)*3^(n+2)/2. - Vaclav Kotesovec, Oct 02 2013

A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0

Views

Author

Peter Luschny, Dec 06 2023

Keywords

Examples

			  [0]   1;
  [1]   1,    2;
  [2]   2,    4,    5;
  [3]   6,   12,   15,   16;
  [4]  24,   48,   60,   64,   65;
  [5] 120,  240,  300,  320,  325,  326;
  [6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
		

Crossrefs

Cf. A094587, A000142 (T(n, 0)), A052849 (T(n, 1)), A000522 (T(n, n)), A007526 (T(n,n-1)), A038154 (T(n, n-2)), A355268 (T(n, n/2)), A367963(n) (T(2*n, n)/n!).
Cf. A001339 (row sums), A087208 (alternating row sums), A082030 (accumulated sums), A053482, A331689.

Programs

  • Maple
    T := (n, k) -> add(n!/j!, j = 0..k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *)
    Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
  • Python
    from functools import cache
    @cache
    def a_row(n: int) -> list[int]:
        if n == 0: return [1]
        row = a_row(n - 1) + [0]
        for k in range(n): row[k] *= n
        row[n] = row[n - 1] + 1
        return row
  • SageMath
    def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1))
    for n in range(9): print([T(n, k) for k in range(n + 1)])
    

Formula

T(n, k) = A094587(n, k) * A000522(k).
T(n, k) = e * (n! / k!) * Gamma(k + 1, 1).
Sum_{k=0..n} T(n, k) * 2^(n - k) = A053482(n).
Sum_{k=0..n} T(n, k) * binomial(n, k) = A331689(n).
Recurrence: T(n, n) = T(n, n-1) + 1 starting with T(0, 0) = 1.
For k <> n: T(n, k) = n * T(n-1, k).
Showing 1-3 of 3 results.