cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A366022 Decimal expansion of a constant related to the asymptotics of A109085.

Original entry on oeis.org

4, 8, 9, 6, 3, 5, 2, 2, 6, 6, 8, 4, 3, 0, 3, 3, 7, 3, 0, 8, 1, 5, 4, 1, 6, 6, 0, 5, 7, 8, 4, 6, 8, 6, 1, 9, 3, 2, 2, 4, 1, 6, 6, 2, 5, 1, 0, 1, 1, 5, 8, 7, 8, 4, 5, 4, 9, 4, 0, 6, 7, 2, 9, 9, 7, 0, 5, 7, 5, 8, 4, 1, 5, 7, 1, 4, 0, 1, 6, 8, 3, 2, 8, 8, 7, 0, 5, 2, 2, 9, 0, 1, 9, 6, 3, 9, 3, 8, 9, 9, 1, 7, 3, 2, 7, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2023

Keywords

Examples

			0.489635226684303373081541660578468619322416625...
		

Crossrefs

Programs

  • Mathematica
    val = -s*Log[r*s] / Sqrt[2*Pi*((-2 - 3*Log[r*s] + 2*Log[1 - r*s])* QPolyGamma[0, 1, r*s] + QPolyGamma[0, 1, r*s]^2 - 4*ArcTanh[1 - 2*r*s]*(Log[r*s] - Log[1 - r*s]/2 - r*(s/(1 - r*s))) - 2*(Log[1 - r*s]/(1 - r*s)) - QPolyGamma[1, 1, r*s] + r*s*Log[r* s]*((-r)*s^2*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] + 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))] /. FindRoot[{s == 1/QPochhammer[r*s], 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s* Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]]

Formula

Equals limit_{n->infinity} A109085(n) * n^(3/2) / A270915^n.

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A270915 Decimal expansion of a constant related to the asymptotics of A008485.

Original entry on oeis.org

5, 3, 5, 2, 7, 0, 1, 3, 3, 3, 4, 8, 6, 6, 4, 2, 6, 8, 7, 7, 7, 2, 4, 1, 5, 8, 1, 4, 1, 6, 5, 3, 2, 7, 8, 7, 9, 8, 5, 1, 4, 8, 3, 2, 7, 1, 2, 8, 6, 9, 4, 7, 0, 9, 7, 3, 1, 9, 6, 9, 0, 7, 5, 6, 0, 6, 4, 1, 0, 2, 1, 5, 1, 2, 6, 7, 5, 3, 1, 5, 5, 2, 2, 3, 2, 3, 4, 2, 7, 6, 4, 4, 7, 8, 8, 5, 4, 2, 2, 8, 2, 2, 8, 1, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Examples

			5.352701333486642687772415814165327879851483271286947097319690756...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{s == 1/QPochhammer[r*s], QPochhammer[r*s] + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A008485(n)^(1/n).

A181315 G.f. A(x) satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^n).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 227, 832, 3125, 11970, 46579, 183614, 731688, 2942673, 11928707, 48688888, 199932987, 825379993, 3423614756, 14261439594, 59635806865, 250241613688, 1053380320889, 4446989542144, 18823433444211, 79871578901283
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +...
The g.f. A = A(x) satisfies
log(A) = x*A/(1-x^2*A^2) + (x^2/2)*A^2/(1-x^4*A^4) + (x^3/3)*A^3/(1-x^6*A^6) +...
		

Crossrefs

Programs

  • Maple
    nmax:=25: kmax:=nmax: for n from 1 to nmax+1 do A(x):=add(a(k)*x^k, k=0..kmax-1): A(x) := product((1 + x^k*A(x)^k),k=1..kmax+1): a(n-1):=coeff(A(x),x,n-1): od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    InverseSeries[x QPochhammer[x, x^2] + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x/prod(k=1,n+1,1+x^k+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/(1-(x*A)^(2*m))/m))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} A000009(n)*x^n*A(x)^n, where A000009(n) is the number of partitions of n into distinct parts.
G.f.: A(x) = (1/x)*Series_Reversion[x^(1/24)*eta(x)/eta(x^2)] (cf. A081362).
G.f. satisfies A(x) = exp( Sum_{n>=1} (x^n/n)*A(x)^n/(1 - (x*A(x))^(2*n)) ).
a(n) ~ c * d^n / n^(3/2), where d = A270914 = 4.50247674761735448773859393270078440676312875609162163346454... and c = A366018 = 0.482420439587319764659364391266849418507665645926542970519109122... - Vaclav Kotesovec, Aug 21 2018

A106336 Number of ways of writing n as the sum of n+1 triangular numbers, divided by n+1.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 25, 64, 169, 442, 1172, 3180, 8730, 24116, 67159, 188568, 532741, 1512695, 4315996, 12369324, 35587923, 102747636, 297601382, 864525312, 2518185362, 7353088206, 21520084301, 63115752910, 185474840912, 546042990300, 1610314638958
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

Apparently: Number of Dyck n-paths with each ascent length being a triangular number. - David Scambler, May 09 2012

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 64*x^7 +...
A(x) = F(x*A(x)) where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + ...
The radius of convergence equals r = 0.322627632692191133... (A106335)
at which the g.f. converges to A(r) = 1.987369721184684145... (A106334).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          add(`if`(issqr(8*j+1), x*b(n-j), 0), j=1..n)))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(1+n, i),
                 i=0..n)/(n+1))(b(n)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 31 2017
  • Mathematica
    f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x-1, y, 0] + f[x, y - If[d == 0, 1, Ceiling[Sqrt[2*d]]],If[d == 0, 1, Ceiling[Sqrt[2*d]] + d]]]]; Table[f[n, n, 0], {n, 0, 30}] (* David Scambler, May 09 2012 *)
  • PARI
    {a(n) = my(X); if(n<0,0,X=x+x*O(x^n); polcoef(eta(X^2)^(2*n+2)/eta(X)^(n+1)/(n+1),n))}
    
  • PARI
    {a(n) = if(n<0,0,polcoef( sum(k=1,(sqrtint(8*n+1)+1)\2,x^((k^2-k)/2),x*O(x^n))^(n+1)/(n+1),n))}
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1,n, A=prod(m=1,n,(1+(x*A)^m)*(1-(x*A)^(2*m))));polcoef(A,n)} \\ Paul D. Hanna, Oct 23 2010
    
  • PARI
    {a(n) = my(A=1+x); for(i=1,n, A=exp(sum(m=1,n,(x*A)^m/(1+(x*A)^m+x*O(x^n))/m)));polcoef(A,n)} \\ Paul D. Hanna, Jun 01 2011

Formula

G.f.: A(x) = (1/x) * Series_Reversion( x*eta(x)/eta(x^2)^2 ).
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = F(x*A(x)) where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
(2) log(A(x)) = Sum_{n>=1} A106337(n)/n*x^n.
(3) A(x) = Product_{n>=1} (1 + (x*A(x))^n)*(1 - (x*A(x))^(2*n)). - Paul D. Hanna, Oct 23 2010
(4) A(x) = exp( Sum_{n>=1} (x^n*A(x)^n/(1 + x^n*A(x)^n))/n ). - Paul D. Hanna, Jun 01 2011
From Paul D. Hanna, Jun 11 2025: (Start)
(5) A(x)^4 = Sum_{n>=0} (2*n+1) * (x*A(x))^n / (1 - (x*A(x))^(2*n+1)).
(6) A(x^2)^2 = Sum_{n>=0} (x*A(x^2)^(1/2))^n / (1 + (x*A(x^2)^(1/2))^(2*n+1)).
(End)
a(n) ~ c / (n^(3/2) * A106335^n), where c = A366174 = 0.49833479793360342260635926402850016443069428233051290201996853498... - Vaclav Kotesovec, Oct 07 2020

Extensions

Edited by Paul D. Hanna, Jun 01 2011

A278428 Series reversion of g.f. (1/2)*x*(-1; -x)_inf, where (a; q)_inf is the q-Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 46, 128, 373, 1119, 3405, 10464, 32478, 101781, 321642, 1023512, 3276326, 10543100, 34088806, 110690682, 360810160, 1180195810, 3872588051, 12743937024, 42049240694, 139082885503, 461072582522, 1531697761470, 5098246648103, 17000237006441
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 21 2016

Keywords

Comments

(1/2)*x*(-1; -x)_inf is the g.f. for A081360 shifted right.

Crossrefs

Programs

  • Mathematica
    InverseSeries[x QPochhammer[-1, -x]/2 + O[x]^35][[3]]
    (* Calculation of constant c: *) 1/Sqrt[(4/s^2 - s*Derivative[0, 2][QPochhammer][-1, -s]/r) * Pi] /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where c = 0.1211369424750398272226454930396... and d = A318204 = 3.509754327949703340437273523375193698454789733931739911... - Vaclav Kotesovec, Nov 23 2016

A301455 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x)^k)^k.

Original entry on oeis.org

1, 1, 4, 16, 74, 360, 1840, 9698, 52409, 288697, 1615275, 9153850, 52434770, 303104532, 1765920785, 10358843904, 61129390652, 362650003202, 2161590275029, 12938838382316, 77745063802045, 468760264760369, 2835272729215565, 17198394229862818, 104598950726341920, 637709136315071504
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 74*x^4 + 360*x^5 + 1840*x^6 + 9698*x^7 + 52409*x^8 + 288697*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 215*x^4/4 + 1251*x^5/5 + 7459*x^6/6 + 44885*x^7/7 + 272727*x^8/8 + ... + A255672(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} sigma_2(k)*x^k*A(x)^k/k).

A171802 G.f. satisfies: A(x) = P(x*A(x)^2) where A(x/P(x)^2) = P(x) is the g.f. for Partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 20, 115, 714, 4669, 31671, 220800, 1572395, 11389059, 83642650, 621400794, 4661706035, 35264616260, 268700873765, 2060348179869, 15886552304352, 123102352038195, 958128272163860, 7487015421267228, 58715989507106041
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 +...
G.f. satisfies A(x/P(x)^2) = P(x) where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
and x/P(x)^2 = x - 2*x^2 - x^3 + 2*x^4 + x^5 + 2*x^6 - 2*x^7 - 2*x^9 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/Product[1 - x^k*A[x]^(2*k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
    (* Calculation of constants {d,c}: *) eq = FindRoot[{s*QPochhammer[r*s^2] == 1, 1/s + 2*r*s^2*Derivative[0, 1][QPochhammer][r*s^2, r*s^2] == (2*(Log[1 - r*s^2] + QPolyGamma[0, 1, r*s^2]))/(s* Log[r*s^2])}, {r, 1/8}, {s, 1}, WorkingPrecision -> 1000]; {N[1/r /. eq, 100], val = -s* Log[r*s^2]*(Sqrt[1 - r*s^2]/ Sqrt[4*Pi*(16*r*s^2*ArcTanh[1 - 2*r*s^2] + (1 - r*s^2)*(Log[r*s^2] - 2*Log[1 - r*s^2])*(3*Log[r*s^2] - 2*Log[1 - r*s^2]) - 8*Log[1 - r*s^2] + 8*(1 - r*s^2)*(-1 + 2*ArcTanh[1 - 2*r*s^2]) * QPolyGamma[0, 1, r*s^2] + 4*(1 - r*s^2)*QPolyGamma[0, 1, r*s^2]^2 - 4*(1 - r*s^2)*(QPolyGamma[1, 1, r*s^2] + r*s^2*Log[r*s^2]*(r*s^3*Log[r*s^2]* Derivative[0, 2][QPochhammer][r*s^2, r*s^2] - 2* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s^2])))]) /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Sep 26 2023 *)
  • PARI
    a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^2))^(1/2), n)

Formula

G.f. A(x) satisfies [Paul D. Hanna, Nov 24 2012]:
(1) A(x) = (1/x)*series_reversion(x*eta(x)^2).
(2) A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(2*n)).
(3) A(x) = Sum_{n>=0} x^n*A(x)^(2*n) / Product_{k=1..n} (1-x^k*A(x)^(2*k)).
(4) A(x) = Sum_{n>=0} (x*A(x)^2)^(n^2) / Product_{k=1..n} (1-x^k*A(x)^(2*k))^2.
(5) A(x) = exp( Sum_{n>=1} (x^n/n) * A(x)^(2*n)/(1 - x^n*A(x)^(2*n)) ).
a(n) ~ c * d^n / n^(3/2), where d = 8.42516721063251541777601555584151410936... and c = 0.2128745515668564974075326286129891378270... - Vaclav Kotesovec, May 13 2018

A109084 G.f. A(x) satisfies: A(x) = 1/G000041(x/A(x)) where G000041(x) is the g.f. of the partition numbers A000041.

Original entry on oeis.org

1, -1, -2, -5, -17, -63, -253, -1062, -4615, -20570, -93538, -432211, -2023567, -9578815, -45767162, -220431025, -1069079067, -5216655257, -25592441875, -126157044454, -624560659184, -3103962569509, -15480272621533, -77450458331100, -388627340240958, -1955249529839424
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2005

Keywords

Comments

Note: coefficient [x^n] A(x)^n = -A000203(n) (sum of divisors of n) for n>0.

Examples

			The initial terms [x^0] through [x^n] of n-th self-convolution
are persistently small:
A^0: 1;
A^1: 1,-1;
A^2: 1,-2,-3;
A^3: 1,-3,-3,-4;
A^4: 1,-4,-2,0,-7;
A^5: 1,-5,0,5,0,-6;
A^6: 1,-6,3,10,3,6,-12;
A^7: 1,-7,7,14,0,7,0,-8;
A^8: 1,-8,12,16,-10,0,-8,8,-15;
A^9: 1,-9,18,15,-27,-9,-21,0,0,-13;
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant c: *) val = Sqrt[r*s^5*(-1 + s/r)*(Log[r/s]^2 / (2*Pi*(2*s^3*(-s*Log[1 - r/s] + ArcTanh[1 - 2*r/s] * (2*r - (r - s)*(Log[1 - r/s] - 2*Log[r/s]))) + (r - s)*(s^3*(2 - 2*Log[1 - r/s] + 3*Log[r/s]) * QPolyGamma[0, 1, r/s] - s^3*QPolyGamma[0, 1, r/s]^2 + s^3*QPolyGamma[1, 1, r/s] + r*Log[r/s]*(r*Log[r/s] * Derivative[0, 2][QPochhammer][r/s, r/s] - 2*s^2*Derivative[0, 0, 1][QPolyGamma][0, 1, r/s])))))] /. FindRoot[{QPochhammer[r/s] == s, (Log[1 - r/s] + QPolyGamma[0, 1, r/s])/Log[r/s] == 1 + (r*Derivative[0, 1][QPochhammer][r/s, r/s])/s^2}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 1000]; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Oct 02 2023 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*eta(x+x*O(x^n))),n)

Formula

G.f.: A(x) = x/series_reversion(x*eta(x)). G.f.: A(x) = 1/G109085(x) where G109085(x) is g.f. of A109085.
a(n) ~ -c * d^n / n^(3/2), where d = A270915 = 5.35270133348664268777241581416... and c = 0.146705445870000769931272287955221766131167... - Vaclav Kotesovec, May 13 2018

A171803 G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).

Original entry on oeis.org

1, 2, 9, 48, 286, 1818, 12086, 82992, 584079, 4190738, 30539814, 225426240, 1681904909, 12663614266, 96099303213, 734250983952, 5643749482600, 43610375803722, 338578974873523, 2639771240159904, 20659895819582337
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...
A(x/P(x)^2) = P(x)^2 where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
    nmax = 30; A[] = 0; Do[A[x] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* Vaclav Kotesovec, Oct 03 2023 *)
    (* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
  • PARI
    a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)

Formula

G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - A(x)^n)^2.
G.f.: A(x) = Series_Reversion(x*eta(x)^2) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).
Self-convolution of A171802.
From Vaclav Kotesovec, Nov 11 2017: (Start)
a(n) ~ c * d^n / n^(3/2), where
d = 8.4251672106325154177760155558415141093613298032469849432733825... and
c = 0.6057593757525562292332998445991464666128350560350232598293... (End)
Showing 1-10 of 22 results. Next