cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171803 G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).

Original entry on oeis.org

1, 2, 9, 48, 286, 1818, 12086, 82992, 584079, 4190738, 30539814, 225426240, 1681904909, 12663614266, 96099303213, 734250983952, 5643749482600, 43610375803722, 338578974873523, 2639771240159904, 20659895819582337
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...
A(x/P(x)^2) = P(x)^2 where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
    nmax = 30; A[] = 0; Do[A[x] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* Vaclav Kotesovec, Oct 03 2023 *)
    (* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
  • PARI
    a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)

Formula

G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - A(x)^n)^2.
G.f.: A(x) = Series_Reversion(x*eta(x)^2) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).
Self-convolution of A171802.
From Vaclav Kotesovec, Nov 11 2017: (Start)
a(n) ~ c * d^n / n^(3/2), where
d = 8.4251672106325154177760155558415141093613298032469849432733825... and
c = 0.6057593757525562292332998445991464666128350560350232598293... (End)

A171805 G.f.: Series reversion of x/P(x)^3 where P(x) is the g.f. for Partition numbers (A000041).

Original entry on oeis.org

1, 3, 18, 130, 1044, 8946, 80135, 741312, 7027515, 67911855, 666525630, 6625647054, 66570488901, 674964968175, 6897258376218, 70961851119848, 734455079297433, 7641851681095236, 79886815507105175, 838655487787502616, 8837797224686207976, 93454820274339167191
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2009

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 130*x^4 + 1044*x^5 + 8946*x^6 +...
where Series_Reversion(A(x)) = x/P(x)^3 = x*eta(x)^3 and
x*eta(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + 13*x^22 +...
		

Crossrefs

Programs

  • Mathematica
    InverseSeries[x QPochhammer[x]^3 + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
    (* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^3 == s, 1/s + 3*(s/r)^(1/3)*Derivative[0, 1][QPochhammer][s, s] == (3*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/10}, {s, 1/8}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*(-1 + s)*s^2*(Log[s]^2/(6*Pi*(r*(-4*s*ArcTanh[1 - 2*s] + Log[1 - s]*(2 + 3*(-1 + s)*Log[1 - s] + Log[s] - s*Log[s])) - (-1 + s)*(-3*r*QPolyGamma[0, 1, s]^2 + r*QPolyGamma[1, 1, s] + QPolyGamma[0, 1, s]*(r*(2 - 6*Log[1 - s] + Log[s]) + 6*(r/s)^(2/3)*s^2*Log[s]* Derivative[0, 1][QPochhammer][s, s]) + s*Log[s]*((r/s)^(1/3)*s*(6*(r/s)^(1/3) * Log[1 - s] * Derivative[0, 1][QPochhammer][s, s] - 4*s*Log[s] * Derivative[0, 1][QPochhammer][s, s]^2 + (r/s)^(1/3)*s*Log[s]* Derivative[0, 2][QPochhammer][s, s]) - 2*r*Derivative[0, 0, 1][ QPolyGamma][0, 1, s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
  • PARI
    {a(n)=polcoeff(serreverse(x*eta(x+x*O(x^n))^3),n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = x/Product_{n>=1} (1 - A(x)^n)^3 ;
(2) A(x) = x/Sum_{n>=0} (-1)^n*(2n+1)*A(x)^(n(n+1)/2).
G.f.: A(x) = Series_Reversion(x*eta(x)^3) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).
Self-convolution cube of A171804 (with offset).
a(n) ~ c * d^n / n^(3/2), where d = 11.34340769381039824727582112969136186... and c = 0.05972244738388663765328174469956... - Vaclav Kotesovec, Nov 11 2017

Extensions

More terms from Vladimir Reshetnikov, Nov 21 2016

A171804 G.f. satisfies: A(x) = P(x*A(x)^3) where A(x/P(x)^3) = P(x) is the g.f. for partition numbers (A000041).

Original entry on oeis.org

1, 1, 5, 33, 252, 2090, 18299, 166450, 1557595, 14898228, 145003996, 1431487820, 14299208690, 144262270360, 1467857359738, 15045486643137, 155208575698230, 1610201799670560, 16788969497000365, 175838914655128068
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2009

Keywords

Examples

			From _Peter Bala_, Nov 12 2024: (Start)
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
I(P(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + 2816*x^7 + ...
I^2(P(x)) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 + 4669*x^6 + 31671*x^7 + ...
I^3(P(x)) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + 18299*x^6 + 166450*x^7 + ... = the g.f. A(x). (End)
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^3))^(1/3), n)
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A^3+x*O(x^n))^k))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(3*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(3*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^3+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies
(1) A(x) = 1/Product_{k>0} (1-x^k*A(x)^3).
(2) A(x) = Sum_{n>=0} x^n*A(x)^(3*n) / Product_{k=1..n} (1-x^k*A(x)^(3*k)).
(3) A(x) = Sum_{n>=0} x^(n^2)*A(x)^(3*n^2) / Product_{k=1..n} (1-x^k*A(x)^(3*k))^2.
G.f.: A(x) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + ...
G.f. satisfies A(x/P(x)^3) = P(x) where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
and x/P(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + ...
Also, the g.f. A = A(x) satisfies:
(1) A(x) = 1/((1-x*A^3) * (1-x^2*A^6) * (1-x^3*A^9) * (1-x^4*A^12) * ...).
(2) A(x) = 1 + x*A^3/(1-x*A^3) + x^2*A^6/((1-x*A^3)*(1-x^2*A^6)) + x^3*A^9/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9)) + ...
(3) A(x) = 1 + x*A^3/(1-x*A^3)^2 + x^4*A^12/((1-x*A^3)*(1-x^2*A^6))^2 + x^9*A^27/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9))^2 + ...
From Peter Bala, Nov 12 2024: (Start)
A(x) = ( 1/x * series_reversion(x/P(x)^3) )^(1/3).
A(x) = the third iterate I^3(P(x)), where the operator I is defined by I(f(x)) = 1/x * series_reversion(x/f(x)). See the Example section. (Note that I(P(x)) is the g.f. of A109085 and I^2(P(x)) is the g.f. of A171802.) (End)

A366026 G.f. A(x) satisfies A(x) = Product_{k>=1} (1 + x^k*A(x)^(2*k)).

Original entry on oeis.org

1, 1, 3, 13, 64, 340, 1903, 11053, 65992, 402508, 2497207, 15709873, 99980007, 642535004, 4164018953, 27181480712, 178559253274, 1179546465168, 7830695860690, 52216823047741, 349584244515573, 2348869478981267, 15833924106623011, 107057382854642578, 725829177205070854
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x]^(2*k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    (* The constants {d,c}: *) {1/r, 1/(2*Sqrt[Pi*(1/s^2 + 2*r^2*s*Derivative[0, 2][QPochhammer][-1, r*s^2])])} /. FindRoot[{2*s == QPochhammer[-1, r*s^2], r*s*Derivative[0, 1][QPochhammer][-1, r*s^2] == 1}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120]

Formula

A(x) satisfies QPochhammer(-1, x*A(x)^2) = 2*A(x).
a(n) ~ c * d^n / n^(3/2), where d = 7.2188305975020061051473056449576894316519... and c = 0.2182691546096422371919544994005940622002...
Showing 1-4 of 4 results.