A171802
G.f. satisfies: A(x) = P(x*A(x)^2) where A(x/P(x)^2) = P(x) is the g.f. for Partition numbers (A000041).
Original entry on oeis.org
1, 1, 4, 20, 115, 714, 4669, 31671, 220800, 1572395, 11389059, 83642650, 621400794, 4661706035, 35264616260, 268700873765, 2060348179869, 15886552304352, 123102352038195, 958128272163860, 7487015421267228, 58715989507106041
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 +...
G.f. satisfies A(x/P(x)^2) = P(x) where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
and x/P(x)^2 = x - 2*x^2 - x^3 + 2*x^4 + x^5 + 2*x^6 - 2*x^7 - 2*x^9 +...
-
nmax = 20; A[] = 0; Do[A[x] = 1/Product[1 - x^k*A[x]^(2*k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
(* Calculation of constants {d,c}: *) eq = FindRoot[{s*QPochhammer[r*s^2] == 1, 1/s + 2*r*s^2*Derivative[0, 1][QPochhammer][r*s^2, r*s^2] == (2*(Log[1 - r*s^2] + QPolyGamma[0, 1, r*s^2]))/(s* Log[r*s^2])}, {r, 1/8}, {s, 1}, WorkingPrecision -> 1000]; {N[1/r /. eq, 100], val = -s* Log[r*s^2]*(Sqrt[1 - r*s^2]/ Sqrt[4*Pi*(16*r*s^2*ArcTanh[1 - 2*r*s^2] + (1 - r*s^2)*(Log[r*s^2] - 2*Log[1 - r*s^2])*(3*Log[r*s^2] - 2*Log[1 - r*s^2]) - 8*Log[1 - r*s^2] + 8*(1 - r*s^2)*(-1 + 2*ArcTanh[1 - 2*r*s^2]) * QPolyGamma[0, 1, r*s^2] + 4*(1 - r*s^2)*QPolyGamma[0, 1, r*s^2]^2 - 4*(1 - r*s^2)*(QPolyGamma[1, 1, r*s^2] + r*s^2*Log[r*s^2]*(r*s^3*Log[r*s^2]* Derivative[0, 2][QPochhammer][r*s^2, r*s^2] - 2* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s^2])))]) /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Sep 26 2023 *)
-
a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^2))^(1/2), n)
A171803
G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).
Original entry on oeis.org
1, 2, 9, 48, 286, 1818, 12086, 82992, 584079, 4190738, 30539814, 225426240, 1681904909, 12663614266, 96099303213, 734250983952, 5643749482600, 43610375803722, 338578974873523, 2639771240159904, 20659895819582337
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...
A(x/P(x)^2) = P(x)^2 where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...
-
nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
nmax = 30; A[] = 0; Do[A[x] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* Vaclav Kotesovec, Oct 03 2023 *)
(* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
-
a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)
A171805
G.f.: Series reversion of x/P(x)^3 where P(x) is the g.f. for Partition numbers (A000041).
Original entry on oeis.org
1, 3, 18, 130, 1044, 8946, 80135, 741312, 7027515, 67911855, 666525630, 6625647054, 66570488901, 674964968175, 6897258376218, 70961851119848, 734455079297433, 7641851681095236, 79886815507105175, 838655487787502616, 8837797224686207976, 93454820274339167191
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 130*x^4 + 1044*x^5 + 8946*x^6 +...
where Series_Reversion(A(x)) = x/P(x)^3 = x*eta(x)^3 and
x*eta(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + 13*x^22 +...
-
InverseSeries[x QPochhammer[x]^3 + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
(* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^3 == s, 1/s + 3*(s/r)^(1/3)*Derivative[0, 1][QPochhammer][s, s] == (3*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/10}, {s, 1/8}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*(-1 + s)*s^2*(Log[s]^2/(6*Pi*(r*(-4*s*ArcTanh[1 - 2*s] + Log[1 - s]*(2 + 3*(-1 + s)*Log[1 - s] + Log[s] - s*Log[s])) - (-1 + s)*(-3*r*QPolyGamma[0, 1, s]^2 + r*QPolyGamma[1, 1, s] + QPolyGamma[0, 1, s]*(r*(2 - 6*Log[1 - s] + Log[s]) + 6*(r/s)^(2/3)*s^2*Log[s]* Derivative[0, 1][QPochhammer][s, s]) + s*Log[s]*((r/s)^(1/3)*s*(6*(r/s)^(1/3) * Log[1 - s] * Derivative[0, 1][QPochhammer][s, s] - 4*s*Log[s] * Derivative[0, 1][QPochhammer][s, s]^2 + (r/s)^(1/3)*s*Log[s]* Derivative[0, 2][QPochhammer][s, s]) - 2*r*Derivative[0, 0, 1][ QPolyGamma][0, 1, s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
-
{a(n)=polcoeff(serreverse(x*eta(x+x*O(x^n))^3),n)}
Showing 1-3 of 3 results.