cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081360 Expansion of q^(-1/24) (m (1-m) / 16)^(1/24) in powers of q, where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.

Original entry on oeis.org

1, -1, 1, -2, 2, -3, 4, -5, 6, -8, 10, -12, 15, -18, 22, -27, 32, -38, 46, -54, 64, -76, 89, -104, 122, -142, 165, -192, 222, -256, 296, -340, 390, -448, 512, -585, 668, -760, 864, -982, 1113, -1260, 1426, -1610, 1816, -2048, 2304, -2590, 2910, -3264, 3658, -4097, 4582, -5120, 5718, -6378
Offset: 0

Views

Author

Michael Somos, Mar 18 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into distinct parts with an even number of odd parts minus partitions of n into distinct parts with an odd number of odd parts. G.f.: Product_{i=1..oo} (1+(-1)^i*x^i). - Jon Perry, Jun 04 2004

Examples

			G.f. = 1 - x + x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 5*x^7 + 6*x^8 - 8*x^9 + ...
G.f. = q - q^25 + q^49 - 2*q^73 + 2*q^97 - 3*q^121 + 4*q^145 - 5*q^169 + ...
		

Crossrefs

Programs

  • Maple
    read theta; t1:=series(eta,q,48); t2:= q^(-1/24)*t1*subs(q=q^4,t1)/subs(q=q^2,t1)^2; series(t2,q,48); seriestolist(%); # N. J. A. Sloane, Aug 24 2007
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ With[ {m = ModularLambda[ Log[ q] / (Pi I)]}, ( m (1 - m) / (16 q))^(1/24)], {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x], {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
    nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    (QPochhammer[-1, -x]/2 + O[x]^60)[[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2, n))};

Formula

Expansion of 1 / chi(x) = chi(-x) / chi(-x^2) = f(x) / phi(x) = f(-x) / phi(-x^2) = psi(-x) / f(-x^2) = f(-x^2) / f(x) = f(-x^4) / psi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (lambda * (1 - lambda) / (16 * q))^(1/24) in powers of q where lambda is a modular elliptic function and q = exp(Pi i z) is the nome. - Michael Somos, Jul 19 2012
Expansion of q^(-1/24) * eta(q) * eta(q^4) / eta(q^2)^2 in powers of q.
Expansion of q^(-1/24) / f(t) in powers of q = exp(Pi i t) where f() is Weber's function.
Euler transform of period 4 sequence [-1, 1, -1, 0, ...].
Given g.f. A(x), B(x) = x * A(x^3)^8 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = (u - v^2) * (v - u^2) - (4 * u * v * (1 - u*v))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
G.f.: Product_{k>0} 1 / ( 1 + x^(2k - 1)) = Product_{k>0} (1 + (-x)^k).
a(n) = (-1)^n * A000009(n). Convolution inverse of A000700.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
G.f.: exp(-Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018
Given g.f. A(x), B(x) = 2^(1/4) * x * A(x^24) satisfies 0 = f(B(x), B(x^5)) where f(u, v) = u^6 + v^6 + 2*u*v * ((u*v)^4 - 1). - Michael Somos, Mar 14 2019

A255526 Coefficient of x^n in Product_{k>=1} 1/(1+x^k)^n.

Original entry on oeis.org

-1, 1, -4, 17, -56, 172, -547, 1809, -6061, 20316, -68135, 229244, -774372, 2624119, -8912759, 30328593, -103382254, 352975681, -1206921212, 4132159452, -14163858895, 48601267199, -166930975524, 573872089212, -1974472043081, 6798561779868, -23425506369715
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1+x^k)^n,{k,1,n}],{x,0,n}],{n,1,30}]
    (* Calculation of constant c: *) 1/Sqrt[(4 - r^2*s^3*Derivative[0, 2][QPochhammer][-1, r*s])*Pi] /. FindRoot[{QPochhammer[-1, r*s] == 2/s, 2/s + r*s*Derivative[0, 1][QPochhammer][-1, r*s] == 0}, {r, -1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.5097543279497033404372735..., c = 0.23322106096789389697797... .

A301624 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k)^k.

Original entry on oeis.org

1, -1, -1, 4, 1, -17, -6, 118, -8, -876, 625, 5966, -7486, -41937, 75969, 306312, -768637, -2164992, 7487063, 14461466, -70259884, -89410774, 646971980, 459817892, -5861484630, -1128608133, 52082250637, -15894742662, -453574650852, 366848121166, 3866670213663, -5215687717614
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2018

Keywords

Examples

			G.f. A(x) = 1 - x - x^2 + 4*x^3 + x^4 - 17*x^5 - 6*x^6 + 118*x^7 - 8*x^8 - 876*x^9 + 625*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * (1 - x^4*A(x)^4)^4 * ...
log(A(x)) = -x - 3*x^2/2 + 8*x^3/3 + 13*x^4/4 - 51*x^5/5 - 120*x^6/6 + 538*x^7/7 + 781*x^8/8 - 5419*x^9/9 - 3053*x^10/10 + ... + A281267(n)*x^n/n + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    Order := 33:
    Gser := solve(series(x*exp(add(sigma[2](n)*x^n/n, n = 1..32)), x) = y, x):
    seq(coeff(Gser, y^k), k = 1..32); # Peter Bala, Feb 09 2020

Formula

From Peter Bala, Feb 09 2020: (Start)
A(x) = 1/x * series reversion of ( exp( Sum_{n >= 1} sigma_2(n)*x^n/n ) ), where sigma_2(n) = A001157(n).
Equivalently, the o.g.f. A(x) satisfies [x^n](1/A(x))^n = sigma_2(n) for n >= 1. Cf. A066398. (End)
A(x) equals (1/x) * series reversion of (x * the o.g.f. for the sequence of planar partitions A000219). - Peter Bala, Feb 11 2020

A318204 Decimal expansion of a constant related to the asymptotics of A255526.

Original entry on oeis.org

3, 5, 0, 9, 7, 5, 4, 3, 2, 7, 9, 4, 9, 7, 0, 3, 3, 4, 0, 4, 3, 7, 2, 7, 3, 5, 2, 3, 3, 7, 5, 1, 9, 3, 6, 9, 8, 4, 5, 4, 7, 8, 9, 7, 3, 3, 9, 3, 1, 7, 3, 9, 9, 1, 1, 7, 8, 9, 8, 9, 9, 3, 7, 8, 5, 8, 5, 4, 8, 2, 1, 7, 0, 1, 5, 1, 2, 0, 0, 7, 7, 4, 4, 5, 6, 4, 8, 9, 4, 0, 8, 1, 3, 0, 7, 5, 1, 2, 1, 3, 2, 6, 4, 0, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 21 2018

Keywords

Examples

			3.509754327949703340437273523375193698454789733931739911...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Oct 03 2023 *)

A301625 G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.

Original entry on oeis.org

1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2018

Keywords

Examples

			G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
		

Crossrefs

Showing 1-5 of 5 results.