cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A255526 Coefficient of x^n in Product_{k>=1} 1/(1+x^k)^n.

Original entry on oeis.org

-1, 1, -4, 17, -56, 172, -547, 1809, -6061, 20316, -68135, 229244, -774372, 2624119, -8912759, 30328593, -103382254, 352975681, -1206921212, 4132159452, -14163858895, 48601267199, -166930975524, 573872089212, -1974472043081, 6798561779868, -23425506369715
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1+x^k)^n,{k,1,n}],{x,0,n}],{n,1,30}]
    (* Calculation of constant c: *) 1/Sqrt[(4 - r^2*s^3*Derivative[0, 2][QPochhammer][-1, r*s])*Pi] /. FindRoot[{QPochhammer[-1, r*s] == 2/s, 2/s + r*s*Derivative[0, 1][QPochhammer][-1, r*s] == 0}, {r, -1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.5097543279497033404372735..., c = 0.23322106096789389697797... .

A278428 Series reversion of g.f. (1/2)*x*(-1; -x)_inf, where (a; q)_inf is the q-Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 46, 128, 373, 1119, 3405, 10464, 32478, 101781, 321642, 1023512, 3276326, 10543100, 34088806, 110690682, 360810160, 1180195810, 3872588051, 12743937024, 42049240694, 139082885503, 461072582522, 1531697761470, 5098246648103, 17000237006441
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 21 2016

Keywords

Comments

(1/2)*x*(-1; -x)_inf is the g.f. for A081360 shifted right.

Crossrefs

Programs

  • Mathematica
    InverseSeries[x QPochhammer[-1, -x]/2 + O[x]^35][[3]]
    (* Calculation of constant c: *) 1/Sqrt[(4/s^2 - s*Derivative[0, 2][QPochhammer][-1, -s]/r) * Pi] /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where c = 0.1211369424750398272226454930396... and d = A318204 = 3.509754327949703340437273523375193698454789733931739911... - Vaclav Kotesovec, Nov 23 2016

A303174 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1).

Original entry on oeis.org

1, -1, 2, -5, 18, -60, 189, -601, 1967, -6544, 21872, -73247, 246080, -829924, 2808357, -9527485, 32389671, -110316862, 376372802, -1286063899, 4400499380, -15075608840, 51704898623, -177513230200, 610007283817, -2098029341745, 7221561430933, -24875274224531
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] 1/(1 + x) = -1;
a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2;
a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5;
a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18;
a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins:
n = 0: (1),  0,   0,    0,   0,    0,  ...
n = 1:  1, (-1),  1,   -1,   1,   -1,  ...
n = 2:  1,  -2,  (2),  -2,   3,   -4,  ...
n = 3:  1,  -3,   4,  (-5),  9,  -14,  ...
n = 4:  1,  -4,   7,  -10, (18), -30,  ...
n = 5:  1,  -5,  11,  -18,  33, (-60), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.50975432794970334043727352337... and c = 0.2457469629428839220188283... - Vaclav Kotesovec, Aug 21 2018
Showing 1-3 of 3 results.