cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A270913 Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
           (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

A270924 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k*n).

Original entry on oeis.org

1, 2, 16, 128, 1056, 8952, 77200, 673948, 5937792, 52689170, 470210016, 4215834328, 37945215552, 342650763392, 3102866408560, 28166168335128, 256220106742272, 2335126111557564, 21317113277158336, 194890649121580880, 1784158030393621056, 16353089279998330456
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 9.38812912875337022533876219516002188057967... and c = 0.2845468763296311652189248055322905919858...

A270923 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k^n).

Original entry on oeis.org

1, 2, 10, 88, 1414, 46648, 3026028, 373615284, 92794268694, 46265940243794, 44694344296430280, 86689242777435107120, 340600515192402995860548, 2624923513793602103874986688, 40749869155795866122979193705136, 1290021269710020392957588463834452744
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...
a(n) = [x^n] exp(Sum_{k>=1} (sigma_(n+1)(2*k) - sigma_(n+1)(k))*x^k/(2^n*k)). - Ilya Gutkovskiy, Apr 26 2019

A291697 a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^n.

Original entry on oeis.org

1, 2, 8, 44, 256, 1512, 9056, 54896, 335872, 2069774, 12827888, 79875996, 499305472, 3131436856, 19694403520, 124165133424, 784478240768, 4965659813668, 31484486937512, 199923173603596, 1271192603065856, 8092551782518688, 51574780342740256, 329022223268286288, 2100934234342260736
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^3) holds for all primes p >= 5. Cf. A270919. (End)

Crossrefs

Main diagonal of A289522.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^n, {k, 0, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 24}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == QPochhammer[-r*s, r^2*s^2] / QPochhammer[r*s, r^2*s^2], QPochhammer[r*s, r^2*s^2] + QPochhammer[r*s, r^2*s^2]*((QPolyGamma[0, Log[-r*s]/Log[r^2*s^2], r^2*s^2] - QPolyGamma[0, Log[r*s]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2]) + 2*r^2*s^2*Derivative[0, 1][QPochhammer][r*s, r^2*s^2] == 2*r^2*s*Derivative[0, 1][QPochhammer][-r*s, r^2*s^2]}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)

Formula

a(n) = A289522(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 6.52085730573545526010335599231748172235904... and c = 0.296494808714349908707366708893... - Vaclav Kotesovec, Aug 30 2017

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.

A309986 Convolution of A270913 and A008485.

Original entry on oeis.org

1, 2, 9, 43, 206, 999, 4915, 24372, 121698, 611244, 3085612, 15645347, 79639602, 406809249, 2084567381, 10712007629, 55187254157, 284981396231, 1474729519719, 7646180479889, 39713643612380, 206600871071930, 1076372569004514, 5615363541987786, 29331204404385053
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A270913[n_] := SeriesCoefficient[Product[(1 + x^k)^n, {k, 1, n}], {x, 0, n}];
    A008485[n_] := SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A008485[k]*A270913[n-k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687... and c = 0.446705640528056029457240607298917821281915554...

A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).

Original entry on oeis.org

1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1),  0,    0,    0,     0,       0,  ...
n = 1:  1,  (2),   4,    8,    14,      24,  ...
n = 2:  1,   4,  (16),  60,   208,     692,  ...
n = 3:  1,   6,   36, (200), 1038,    5160   ...
n = 4:  1,   8,   64,  472, (3264),  21608,  ...
n = 5:  1,  10,  100,  920,  7950,  (65752), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ exp(2*sqrt(2*n) - 1) * n^(n - 3/4) / (2^(3/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019

A304448 Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(n^2).

Original entry on oeis.org

1, 2, 40, 1320, 61984, 3797560, 287566368, 25957422400, 2721948311680, 325260627848442, 43635601119149040, 6494550360714973304, 1062063969900788407680, 189301256401392643093560, 36526821128512112807216192, 7585918627122817713267856320
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(n^2), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(n^2), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ 2^(n - 1/2) * exp(n + 1/2) * n^(n - 1/2) / sqrt(Pi).

A304447 Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(2*n).

Original entry on oeis.org

1, 4, 40, 448, 5264, 63624, 783328, 9770240, 123040288, 1561033348, 19922193200, 255472920256, 3289122824000, 42488488508808, 550435283089088, 7148519205631488, 93038785849116736, 1213215382135324680, 15846906866928513736, 207302985358274247104
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(2*n), {x, 0, n}], {n, 0, nmax}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{QPochhammer[-1, r*s] == 2*Sqrt[s]*QPochhammer[r*s], (QPochhammer[ r*s]*(Log[r*s] - 2*Log[1 - r*s] - 2*QPolyGamma[0, 1, r*s])) / Log[r*s] - r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] + 2*r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[((1 - r*s)*Log[r*s]^2*QPochhammer[r*s]) / (Pi*(2*r*s*(-1 + r*s) * Log[r*s]*(2*(Log[r*s] - 2*Log[1 - r*s] - 2*QPolyGamma[0, 1, r*s]) * Derivative[0, 1][QPochhammer][r*s, r*s] + r*Sqrt[s]*Log[r*s] * (-Derivative[0, 2][QPochhammer][-1, r*s] + 2*Sqrt[s]*Derivative[0, 2][QPochhammer][r*s, r*s])) + QPochhammer[ r*s]*(16*r*s*ArcTanh[1 - 2*r*s] + (1 - r*s)*Log[r*s]^2 - 8*Log[1 - r*s] + 4*(-1 + r*s)*Log[1 - r*s]^2 + 8*(-1 + r*s)*(1 + Log[1 - r*s])* QPolyGamma[0, 1, r*s] + 4*(-1 + r*s)*QPolyGamma[0, 1, r*s]^2 + 4*(-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 13.43567525239504624062504283058713960962824709850658926621911428148173077464... and c = 0.3323527904383991069791889982282236666403568774227549868882810268779...
Showing 1-10 of 17 results. Next