cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073229 Decimal expansion of e^(1/e).

Original entry on oeis.org

1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

e^(1/e) = 1/((1/e)^(1/e)) (reciprocal of A072364).
Let w(n+1)=A^w(n); then w(n) converges if and only if (1/e)^e <= A <= e^(1/e) (see the comments in A073230) for initial value w(1)=A. If A=e^(1/e) then lim_{n->infinity} w(n) = e. - Benoit Cloitre, Aug 06 2002; corrected by Robert FERREOL, Jun 12 2015
x^(1/x) is maximum for x = e and the maximum value is e^(1/e). This gives an interesting and direct proof that 2 < e < 4 as 2^(1/2) < e^(1/e) > 4^(1/4) while 2^(1/2) = 4^(1/4). - Amarnath Murthy, Nov 26 2002
For large n, A234604(n)/A234604(n-1) converges to e^(1/e). - Richard R. Forberg, Dec 28 2013
Value of the unique base b > 0 for which the exponential curve y=b^x and its inverse y=log_b(x) kiss each other; the kissing point is (e,e). - Stanislav Sykora, May 25 2015
Actually, there is another base with such property, b=(1/e)^e with kiss point (1/e,1/e). - Yuval Paz, Dec 29 2018
The problem of finding the maximum of f(x) = x^(1/x) was posed and solved by the Swiss mathematician Jakob Steiner (1796-1863) in 1850. - Amiram Eldar, Jun 17 2021

Examples

			1.44466786100976613365833910859...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 35.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073230 ((1/e)^e), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

  • Maple
    evalf[110](exp(exp(-1))); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    RealDigits[ E^(1/E), 10, 110] [[1]]
  • PARI
    exp(1)^exp(-1)

Formula

Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1 - Integral_{x = 0..1/e} (1 + log(x))/x^x dx. - Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(-k)/k!. - Amiram Eldar, Aug 13 2020
Equals lim_{x->oo} (Sum_{n>=1} (x/n)^n)^(1/x) (Furdui, 2017). - Amiram Eldar, Mar 26 2022

A270919 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^n.

Original entry on oeis.org

1, 2, 12, 80, 552, 3912, 28224, 206208, 1520784, 11297546, 84413912, 633713808, 4776117216, 36115518376, 273868321536, 2081866609920, 15859616674336, 121046064563376, 925411686479820, 7085465166635440, 54323193841192752, 416993869451825424, 3204447137019290944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^2) holds for all primes p. Cf. A291697. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(QPochhammer[-1, x]/QPochhammer[x, x])^n, {x, 0, n}]/2^n, {n, 0, 25}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{2*s*QPochhammer[r*s] == QPochhammer[-1, r*s], (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] + r*((Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) / (2*QPochhammer[r*s])) == 1}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[(1 - r*s)*Log[r*s]^2*(QPochhammer[r*s] / (Pi*(-r*s*(-1 + r*s) * Log[r*s]*(4*(2*ArcTanh[1 - 2*r*s] + QPolyGamma[0, 1, r*s])* Derivative[0, 1][QPochhammer][r*s, r*s] + r*Log[r*s]*(Derivative[0, 2][QPochhammer][-1, r*s] - 2*s*Derivative[0, 2][QPochhammer][r*s, r*s])) + 2*QPochhammer[r*s] * (4*r*s*ArcTanh[1 - 2*r*s] + 2*(-1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] - (-1 + r*s)*(-2 + Log[r*s] - 2*Log[1 - r*s])*QPolyGamma[0, 1, r*s] + (-1 + r*s) * QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.299856802806668079413694689903953367699319...
a(n) = [x^n] 1/theta_4(x)^n, where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A270924 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k*n).

Original entry on oeis.org

1, 2, 16, 128, 1056, 8952, 77200, 673948, 5937792, 52689170, 470210016, 4215834328, 37945215552, 342650763392, 3102866408560, 28166168335128, 256220106742272, 2335126111557564, 21317113277158336, 194890649121580880, 1784158030393621056, 16353089279998330456
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 9.38812912875337022533876219516002188057967... and c = 0.2845468763296311652189248055322905919858...

A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).

Original entry on oeis.org

1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1),  0,    0,    0,     0,       0,  ...
n = 1:  1,  (2),   4,    8,    14,      24,  ...
n = 2:  1,   4,  (16),  60,   208,     692,  ...
n = 3:  1,   6,   36, (200), 1038,    5160   ...
n = 4:  1,   8,   64,  472, (3264),  21608,  ...
n = 5:  1,  10,  100,  920,  7950,  (65752), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ exp(2*sqrt(2*n) - 1) * n^(n - 3/4) / (2^(3/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019
Showing 1-4 of 4 results.