cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A270919 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^n.

Original entry on oeis.org

1, 2, 12, 80, 552, 3912, 28224, 206208, 1520784, 11297546, 84413912, 633713808, 4776117216, 36115518376, 273868321536, 2081866609920, 15859616674336, 121046064563376, 925411686479820, 7085465166635440, 54323193841192752, 416993869451825424, 3204447137019290944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^2) holds for all primes p. Cf. A291697. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(QPochhammer[-1, x]/QPochhammer[x, x])^n, {x, 0, n}]/2^n, {n, 0, 25}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{2*s*QPochhammer[r*s] == QPochhammer[-1, r*s], (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] + r*((Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) / (2*QPochhammer[r*s])) == 1}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[(1 - r*s)*Log[r*s]^2*(QPochhammer[r*s] / (Pi*(-r*s*(-1 + r*s) * Log[r*s]*(4*(2*ArcTanh[1 - 2*r*s] + QPolyGamma[0, 1, r*s])* Derivative[0, 1][QPochhammer][r*s, r*s] + r*Log[r*s]*(Derivative[0, 2][QPochhammer][-1, r*s] - 2*s*Derivative[0, 2][QPochhammer][r*s, r*s])) + 2*QPochhammer[r*s] * (4*r*s*ArcTanh[1 - 2*r*s] + 2*(-1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] - (-1 + r*s)*(-2 + Log[r*s] - 2*Log[1 - r*s])*QPolyGamma[0, 1, r*s] + (-1 + r*s) * QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.299856802806668079413694689903953367699319...
a(n) = [x^n] 1/theta_4(x)^n, where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A270922 Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k*n).

Original entry on oeis.org

1, 1, 5, 28, 141, 751, 4064, 22198, 122381, 679375, 3792155, 21263331, 119679000, 675763232, 3826165838, 21715370653, 123502583565, 703694143160, 4016079632039, 22953901314649, 131366012754691, 752709483123304, 4317601694413683, 24790635783551008
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 5.86811560195778704624328861800917668... and c = 0.25351514412215050116013727161633502...
a(n) = [x^n] exp(n*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A270923 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k^n).

Original entry on oeis.org

1, 2, 10, 88, 1414, 46648, 3026028, 373615284, 92794268694, 46265940243794, 44694344296430280, 86689242777435107120, 340600515192402995860548, 2624923513793602103874986688, 40749869155795866122979193705136, 1290021269710020392957588463834452744
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...
a(n) = [x^n] exp(Sum_{k>=1} (sigma_(n+1)(2*k) - sigma_(n+1)(k))*x^k/(2^n*k)). - Ilya Gutkovskiy, Apr 26 2019

A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).

Original entry on oeis.org

1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1),  0,    0,    0,     0,       0,  ...
n = 1:  1,  (2),   4,    8,    14,      24,  ...
n = 2:  1,   4,  (16),  60,   208,     692,  ...
n = 3:  1,   6,   36, (200), 1038,    5160   ...
n = 4:  1,   8,   64,  472, (3264),  21608,  ...
n = 5:  1,  10,  100,  920,  7950,  (65752), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ exp(2*sqrt(2*n) - 1) * n^(n - 3/4) / (2^(3/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019

A301625 G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.

Original entry on oeis.org

1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2018

Keywords

Examples

			G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
		

Crossrefs

A300412 a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.

Original entry on oeis.org

1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1),  0,   0,    0,     0,       0,  ...
n = 1:  1,  (2),  6,   16,    38,      88,  ...
n = 2:  1,   4, (16),  60,   192,     596,  ...
n = 3:  1,   6,  30, (144),  582,    2280,  ...
n = 4:  1,   8,  48,  280, (1376),   6568,  ...
n = 5:  1,  10,  70,  480,  2790,  (15800), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2 * n^n * (1 + 4/n + 14/n^2 + 44/n^3 + 124/n^4 + 328/n^5 + 824/n^6 + 1980/n^7 + 4590/n^8 + 10320/n^9 + 22584/n^10 + ...), for coefficients see A261451. - Vaclav Kotesovec, Mar 05 2018
Showing 1-6 of 6 results.