cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255672 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).

Original entry on oeis.org

1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2015

Keywords

Comments

Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Main diagonal of A255961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A270924 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k*n).

Original entry on oeis.org

1, 2, 16, 128, 1056, 8952, 77200, 673948, 5937792, 52689170, 470210016, 4215834328, 37945215552, 342650763392, 3102866408560, 28166168335128, 256220106742272, 2335126111557564, 21317113277158336, 194890649121580880, 1784158030393621056, 16353089279998330456
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 9.38812912875337022533876219516002188057967... and c = 0.2845468763296311652189248055322905919858...

A301456 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x)^k)^k.

Original entry on oeis.org

1, 1, 3, 12, 49, 217, 1006, 4810, 23576, 117812, 597937, 3073874, 15972678, 83758809, 442681653, 2355678968, 12610759255, 67868269712, 366979432955, 1992755590086, 10862329206524, 59414599714958, 326009477088080, 1793977307978268, 9898072238695390, 54744525395860053, 303463833091357785
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 217*x^5 + 1006*x^6 + 4810*x^7 + 23576*x^8 + 117812*x^9 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * (1 + x^4*A(x)^4)^4 * ...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 141*x^4/4 + 751*x^5/5 + 4064*x^6/6 + 22198*x^7/7 + 122381*x^8/8 + ... + A270922(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} (-1)^(k+1)*x^k*A(x)^k/(k*(1 - x^k*A(x)^k)^2)).

A277938 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j*k) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 8, 0, 1, 5, 14, 28, 30, 16, 0, 1, 6, 20, 48, 72, 68, 28, 0, 1, 7, 27, 75, 141, 183, 145, 49, 0, 1, 8, 35, 110, 245, 396, 443, 298, 83, 0, 1, 9, 44, 154, 393, 751, 1058, 1026, 600, 142, 0, 1, 10, 54, 208
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   0, 1,  2,  3,   4, ...
   0, 2,  5,  9,  14, ...
   0, 5, 14, 28,  48, ...
   0, 8, 30, 72, 141, ...
		

Crossrefs

Columns k=0-4 give: A000007, A026007, A026011, A027346, A027906.
Rows n=0-3 give: A000012, A001477, A000096, A005586.
Main diagonal gives A270922.
Antidiagonal sums give A299167.

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(j*k).

A281267 Main diagonal of A276554.

Original entry on oeis.org

1, -1, -3, 8, 13, -51, -120, 538, 781, -5419, -3053, 47673, 5080, -427740, 136462, 3922383, -3278067, -34819588, 48561567, 299316651, -603368637, -2509708844, 6948730643, 20210062532, -76150197416, -152569240051, 801154765564, 1039352472008, -8158396721266
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2017

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    nmax = 40; Table[SeriesCoefficient[Product[(1 - x^k)^(n*k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)

Formula

a(n) = [x^n] exp(-n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A380291 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.

Original entry on oeis.org

1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3)
a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3)
a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)):
    G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} s_3(k)*x^k/k), where s_3(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3 = A078307(n).
a(n) ~ c * d^n / sqrt(n), where d = 7.7846790125019502578773343468308844201627754275100035492213697757399421948... and c = 0.2484592487737716543953469621097743519172686743284742545545347906986158... - Vaclav Kotesovec, Jul 30 2025

A300187 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k)^(n/k).

Original entry on oeis.org

1, 1, 4, 39, 488, 7615, 147024, 3371137, 89079808, 2665537713, 89142430400, 3295096700071, 133399600068096, 5870116973678191, 278971698167158528, 14239859507270510625, 776985219329347518464, 45130494178637796970273, 2780224621391401396134912, 181059775626543107582734183
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} (1 + x^k)^(n/k) begins:
n = 0: (1), 0,   0,    0,     0,      0,       0,  ...
n = 1:  1, (1),  1,    5,    11,     59,     439,  ...
n = 2:  1,  2,  (4),  16,    68,    328,    2416,  ...
n = 3:  1,  3,   9,  (39),  207,   1197,    8811,  ...
n = 4:  1,  4,  16,   80,  (488),  3296,   25984,  ...
n = 5:  1,  5,  25,  145,   995,  (7615),  65575,  ...
n = 6:  1,  6,  36,  240,  1836,  15624, (147024), ...
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[(1 + x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} A048272(k)*x^k/k).
a(n) ~ c * d^n * n^n, where d = 1.294982800733109500251... and c = 0.6755467963500480915... - Vaclav Kotesovec, Sep 07 2018

A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).

Original entry on oeis.org

1, -1, -3, -1, 25, 624, 9871, 170470, 3027249, 55077245, 979330606, 15079702923, 94670678245, -7958168036625, -626145997536240, -34564907982551791, -1733699815491494303, -84294315853736719077, -4067859614343931897505, -196552300464314521511610, -9519733465269825759734169
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),  -1,    0,   0,     1,  ...
n = 2:  1,  -2,  (-3),   0,   2,    12,  ...
n = 3:  1,  -3,   -6,  (-1),  9,    63,  ...
n = 4:  1,  -4,  -10,   -4, (25),  224,  ...
n = 5:  1,  -5,  -15,  -10,  55,  (624), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).

Original entry on oeis.org

1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),   0,   -1,   1,    -1,  ...
n = 2:  1,  -2,  (-1),  -4,   3,    -2,  ...
n = 3:  1,  -3,   -3, (-10),  6,    15,  ...
n = 4:  1,  -4,   -6,  -20, (11),  104,  ...
n = 5:  1,  -5,  -10,  -35,  20,  (374), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A386729 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^3) is the g.f. of A248882.

Original entry on oeis.org

1, 1, 17, 154, 1377, 13276, 127862, 1249746, 12321121, 122287798, 1220492192, 12235940113, 123133325382, 1243080020352, 12583773308102, 127688996851804, 1298370095026017, 13226355435367992, 134955405683954234, 1379032238329708409, 14110075394718902752, 144544237021110644340
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^4, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} s_4(k)*x^k/k), where s_4(n) = Sum_{d divides n} (-1)^(n/d+1)*d^4 = A284900(n).
a(n) ~ c * d^n / sqrt(n), where d = 10.49088673566991578441632677715184699104285539252671173854512548234581416... and c = 0.2449508761900081824436717230940007974244164508939377916825513986093942...
Showing 1-10 of 11 results. Next