A301455
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x)^k)^k.
Original entry on oeis.org
1, 1, 4, 16, 74, 360, 1840, 9698, 52409, 288697, 1615275, 9153850, 52434770, 303104532, 1765920785, 10358843904, 61129390652, 362650003202, 2161590275029, 12938838382316, 77745063802045, 468760264760369, 2835272729215565, 17198394229862818, 104598950726341920, 637709136315071504
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 74*x^4 + 360*x^5 + 1840*x^6 + 9698*x^7 + 52409*x^8 + 288697*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 215*x^4/4 + 1251*x^5/5 + 7459*x^6/6 + 44885*x^7/7 + 272727*x^8/8 + ... + A255672(n)*x^n/n + ...
A301624
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k)^k.
Original entry on oeis.org
1, -1, -1, 4, 1, -17, -6, 118, -8, -876, 625, 5966, -7486, -41937, 75969, 306312, -768637, -2164992, 7487063, 14461466, -70259884, -89410774, 646971980, 459817892, -5861484630, -1128608133, 52082250637, -15894742662, -453574650852, 366848121166, 3866670213663, -5215687717614
Offset: 0
G.f. A(x) = 1 - x - x^2 + 4*x^3 + x^4 - 17*x^5 - 6*x^6 + 118*x^7 - 8*x^8 - 876*x^9 + 625*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * (1 - x^4*A(x)^4)^4 * ...
log(A(x)) = -x - 3*x^2/2 + 8*x^3/3 + 13*x^4/4 - 51*x^5/5 - 120*x^6/6 + 538*x^7/7 + 781*x^8/8 - 5419*x^9/9 - 3053*x^10/10 + ... + A281267(n)*x^n/n + ...
Cf.
A000219,
A006195,
A066398,
A073592,
A109085,
A181315,
A278428,
A281267,
A301455,
A301456,
A301625.
-
with(numtheory):
Order := 33:
Gser := solve(series(x*exp(add(sigma[2](n)*x^n/n, n = 1..32)), x) = y, x):
seq(coeff(Gser, y^k), k = 1..32); # Peter Bala, Feb 09 2020
A301578
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + k*x^k*A(x)^k).
Original entry on oeis.org
1, 1, 3, 12, 48, 211, 970, 4594, 22311, 110473, 555561, 2829918, 14570666, 75708835, 396481070, 2090558864, 11089276706, 59135014252, 316836936662, 1704764660218, 9207671377450, 49904141524184, 271325301723223, 1479427708380368, 8088057338101442, 44325245804200151
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 12*x^3 + 48*x^4 + 211*x^5 + 970*x^6 + 4594*x^7 + 22311*x^8 + 110473*x^9 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + 2*x^2*A(x)^2) * (1 + 3*x^3*A(x)^3) * (1 + 4*x^4*A(x)^4) * ...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 137*x^4/4 + 726*x^5/5 + 3896*x^6/6 + 21071*x^7/7 + 115089*x^8/8 + ... + A297322(n)*x^n/n + ...
A302287
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x))^k.
Original entry on oeis.org
1, 1, 3, 10, 31, 102, 342, 1167, 4046, 14213, 50464, 180847, 653296, 2376406, 8697194, 32002219, 118322499, 439364380, 1637827543, 6126870808, 22993190147, 86542625565, 326607659370, 1235650643059, 4685502714403, 17804713119018, 67790202024365, 258579199501709, 988012193672223
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 31*x^4 + 102*x^5 + 342*x^6 + 1167*x^7 + 4046*x^8 + 14213*x^9 + 50464*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2 * (1 + x^3*A(x))^3 * (1 + x^4*A(x))^4 * ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
A301625
G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.
Original entry on oeis.org
1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
Offset: 0
G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
A301831
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 + x^k*A(x)^k)^k.
Original entry on oeis.org
1, -1, 0, 0, 6, -16, 16, -34, 217, -681, 1343, -3466, 13370, -42380, 109477, -312448, 1040248, -3267138, 9447529, -28367596, 90504001, -283611105, 861087913, -2654231074, 8386506600, -26359974392, 81902319183, -256179313766, 809890745232, -2557697524240, 8046530976599
Offset: 0
G.f. A(x) = 1 - x + 6*x^4 - 16*x^5 + 16*x^6 - 34*x^7 + 217*x^8 - 681*x^9 + 1343*x^10 - 3466*x^11 + ...
log(A(x)) = -x - x^2/2 - x^3/3 + 23*x^4/4 - 51*x^5/5 + 35*x^6/6 - 197*x^7/7 + ... + A281266(n)*x^n/n + ...
A302289
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + k*x^k*A(x)).
Original entry on oeis.org
1, 1, 3, 10, 30, 98, 323, 1083, 3684, 12710, 44272, 155608, 551259, 1965952, 7052990, 25436711, 92168542, 335376653, 1224991077, 4489818110, 16507728007, 60868469848, 225030777305, 833961333273, 3097594423724, 11529400593846, 42996077073284, 160632616725238, 601132116489719, 2253153800577748
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 30*x^4 + 98*x^5 + 323*x^6 + 1083*x^7 + 3684*x^8 + 12710*x^9 + 44272*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + 2*x^2*A(x)) * (1 + 3*x^3*A(x)) * (1 + 4*x^4*A(x)) * ...
Showing 1-7 of 7 results.