cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A026011 Expansion of Product_{m>=1} (1 + q^m)^(2*m).

Original entry on oeis.org

1, 2, 5, 14, 30, 68, 145, 298, 600, 1182, 2280, 4318, 8064, 14824, 26917, 48292, 85675, 150466, 261762, 451328, 771739, 1309362, 2205109, 3687904, 6127155, 10116074, 16602508, 27093582, 43974355, 71003224
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ Zeta(3)^(1/6) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A027346 Expansion of Product_{m>=1} (1 + q^m)^(3*m).

Original entry on oeis.org

1, 3, 9, 28, 72, 183, 443, 1026, 2313, 5072, 10860, 22767, 46862, 94806, 188886, 371068, 719493, 1378449, 2611540, 4896291, 9090651, 16723930, 30501744, 55177932, 99048719, 176500572, 312330813, 549033172
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-4/3) * 3^(5/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(11/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A299167 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)^k).

Original entry on oeis.org

1, 1, 2, 5, 14, 36, 94, 243, 628, 1619, 4178, 10776, 27793, 71682, 184879, 476832, 1229830, 3171942, 8180989, 21100215, 54421187, 140361900, 362018270, 933709453, 2408202606, 6211182512, 16019743522, 41317765457, 106565859669, 274852289679, 708892898170, 1828360759013, 4715667307920
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Crossrefs

Antidiagonal sums of A277938.

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - x Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A026007(k-1)*a(n-k).

A276554 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-x^j)^(j*k) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -2, 0, 1, -3, -3, -1, 0, 1, -4, -3, 2, 0, 0, 1, -5, -2, 8, 6, 4, 0, 1, -6, 0, 16, 12, 12, 4, 0, 1, -7, 3, 25, 13, 9, 1, 7, 0, 1, -8, 7, 34, 5, -12, -29, -10, 3, 0, 1, -9, 12, 42, -15, -51, -78, -54, -32, -2, 0, 1, -10, 18, 48, -49, -102
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -2, -3, -4, ...
   0, -2, -3, -3, -2, ...
   0, -1,  2,  8, 16, ...
   0,  0,  6, 12, 13, ...
		

Crossrefs

Columns k=0-5 give: A000007, A073592, A276551, A276552, A316463, A316464.
Main diagonal gives A281267.
Antidiagonal sums give A299211.

Formula

G.f. of column k: Product_{j>=1} (1-x^j)^(j*k).

A279928 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j*k) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 1, 0, 1, -5, 2, -1, 7, 0, 0, 1, -6, 5, 0, 15, 2, 4, 0, 1, -7, 9, 0, 23, -3, 10, 2, 0, 1, -8, 14, -2, 30, -20, 8, -8, 8, 0, 1, -9, 20, -7, 36, -51, 2, -42, 5, -2, 0, 1, -10, 27, -16, 42, -96, 5, -88, 6
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -2, -3, -4, ...
   0, -1, -1,  0,  2, ...
   0, -2, -2, -1,  0, ...
   0,  1,  7, 15, 23, ...
		

Crossrefs

Columns k=0-5 give: A000007, A255528, A278710, A279031, A279411, A279932.
Main diagonal gives A281266.
Antidiagonal sums give A299212.

Formula

G.f. of column k: Product_{j>=1} 1/(1+x^j)^(j*k).
Showing 1-5 of 5 results.