cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A255528 G.f.: Product_{k>=1} 1/(1+x^k)^k.

Original entry on oeis.org

1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).

Programs

  • Maple
    with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k,{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
    for(n=0, 100, print1(a(n), ", "))

Formula

a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A262736 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, 1, 0, 3, 3, 5, 8, 10, 22, 25, 41, 57, 88, 126, 168, 261, 351, 512, 685, 984, 1357, 1865, 2566, 3485, 4838, 6459, 8832, 11831, 16056, 21404, 28660, 38259, 50875, 67613, 89161, 118184, 155321, 204609, 267708, 351125, 458331, 597740, 777590, 1010020, 1310390
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3^(4/3) * (Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * Zeta(3)^(1/6) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)).

A261386 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k).

Original entry on oeis.org

1, 4, 16, 56, 176, 520, 1456, 3896, 10048, 25100, 60960, 144440, 334752, 760456, 1696464, 3722224, 8043040, 17135624, 36031104, 74840568, 153680928, 312198160, 627828272, 1250540024, 2468443296, 4830809868, 9377190336, 18061370288, 34531009760, 65552873736
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A026011.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k) / (1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/6 + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (A^2 * 2^(2/3) * n^(13/18) * sqrt(3*Pi)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
G.f.: exp(Sum_{k>=1} (sigma_2(2*k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Apr 14 2019

A027346 Expansion of Product_{m>=1} (1 + q^m)^(3*m).

Original entry on oeis.org

1, 3, 9, 28, 72, 183, 443, 1026, 2313, 5072, 10860, 22767, 46862, 94806, 188886, 371068, 719493, 1378449, 2611540, 4896291, 9090651, 16723930, 30501744, 55177932, 99048719, 176500572, 312330813, 549033172
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-4/3) * 3^(5/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(11/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A341384 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^2.

Original entry on oeis.org

1, 4, 14, 36, 89, 200, 434, 898, 1810, 3548, 6810, 12816, 23719, 43250, 77795, 138244, 242920, 422510, 727907, 1243094, 2105493, 3538936, 5905481, 9787810, 16118588, 26383244, 42936039, 69491436, 111884015, 179239648, 285775148, 453550910, 716670609
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=2..34);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 34; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &

Formula

a(n) ~ A026011(n). - Vaclav Kotesovec, Feb 20 2021

A027906 Expansion of Product_{m>=1} (1+q^m)^(4*m).

Original entry on oeis.org

1, 4, 14, 48, 141, 396, 1058, 2696, 6646, 15884, 36956, 83976, 186849, 407864, 875030, 1847824, 3845520, 7895872, 16010610, 32088120, 63611656, 124817444, 242560418, 467095640, 891754784, 1688619460
Offset: 0

Views

Author

Keywords

Comments

In general, if g.f. = Product_{m>=1} (1+x^m)^(t*m) and t>=1, then a(n) ~ 2^(-2/3 - t/12) * exp((3/2)^(4/3) * t^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * t^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015

Crossrefs

Cf. A026007 (t=1), A026011 (t=2), A027346 (t=3).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(4*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A278710 Convolution square of A255528.

Original entry on oeis.org

1, -2, -1, -2, 7, 2, 10, -8, 5, -40, -4, -54, 52, -30, 162, -12, 292, -142, 270, -576, 168, -1228, 305, -1702, 1435, -1664, 3839, -1444, 7303, -2752, 10117, -8420, 11065, -20714, 11066, -38702, 17057, -57276, 40310, -69898, 94138, -77014, 181926, -97480
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Crossrefs

Product_{k>0} 1/(1 + x^k)^(k*m): A026011 (m=-2), A255528 (m=1), this sequence (m=2), A279031 (m=3), A279411 (m=4).

Formula

G.f.: Product_{k>0} 1/(1 + x^k)^(k*2).
a(n) ~ (-1)^n * exp(-1/6 + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3)) * A^2 * Zeta(3)^(1/9) / (2^(11/18) * sqrt(3*Pi) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
G.f.: exp(2*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Mar 27 2018

A277938 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j*k) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 8, 0, 1, 5, 14, 28, 30, 16, 0, 1, 6, 20, 48, 72, 68, 28, 0, 1, 7, 27, 75, 141, 183, 145, 49, 0, 1, 8, 35, 110, 245, 396, 443, 298, 83, 0, 1, 9, 44, 154, 393, 751, 1058, 1026, 600, 142, 0, 1, 10, 54, 208
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   0, 1,  2,  3,   4, ...
   0, 2,  5,  9,  14, ...
   0, 5, 14, 28,  48, ...
   0, 8, 30, 72, 141, ...
		

Crossrefs

Columns k=0-4 give: A000007, A026007, A026011, A027346, A027906.
Rows n=0-3 give: A000012, A001477, A000096, A005586.
Main diagonal gives A270922.
Antidiagonal sums give A299167.

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(j*k).

A284474 Expansion of Product_{k>=1} (1 + x^(2*k))^(2*k)/(1 + x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, -1, 3, -6, 11, -22, 42, -74, 131, -231, 395, -669, 1122, -1851, 3029, -4915, 7891, -12572, 19881, -31203, 48657, -75391, 116096, -177792, 270822, -410394, 618905, -929052, 1388403, -2066140, 3062270, -4520912, 6649463, -9745072, 14232278, -20716355, 30057438
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k))^(2*k)/(1 + x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)

Formula

a(n) ~ (-1)^n * exp(-1/12 + 3 * 2^(-5/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * A * (7*Zeta(3))^(5/36) / (2^(10/9) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 17 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, Jun 20 2018
Showing 1-10 of 11 results. Next